精英家教网 > 高中数学 > 题目详情
已知方程x2+y2-2x-4y+m=0.
(1)若此方程表示圆,求m的取值范围;
(2)若(1)中的圆与直线x+2y-4=0相交于M,N两点,且(其中O为坐标原点)求m的值;
(3)在(2)的条件下,求以MN为直径的圆的方程.
【答案】分析:(1)将x2+y2-2x-4y+m=0转化为:(x-1)2+(y-2)2=5-m,由方程表示圆,则有5-m>0.
(2)先将直线与圆方程的联立,由相交于两点,则有△=(-16)2-4×5×(8+m)>0,又,得出x1x2+y1y2=0,由韦达定理求解.
(3)线段的中点为圆心,圆心到端点的距离为半径,从而求得结论.
解答:解:(1)x2+y2-2x-4y+m=0即(x-1)2+(y-2)2=5-m(2分)
若此方程表示圆,则5-m>0∴m<5

(2)x=4-2y代入得5y2-16y+8+m=0
∵△=(-16)2-4×5×(8+m)>0

得出:x1x2+y1y2=0而x1x2=(4-2y1)•(4-2y2)=16-8(y1+y2)+4y1y2
∴5y1y2-8(y1+y2)+16=0,∴满足故的m值为

(3)设圆心为(a,b),且O点为以MN为直径的圆上的点
半径圆的方程
点评:本题主要考查直线与圆的位置关系其其方程的应用,同时渗透了向量,是常考题型,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知方程x2+y2-x+4y+m=0.
(1)若此方程表示圆,求的取值范围;
(2)若(1)中的圆的直线x+2y-1=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m;
(3)在(2)得条件下,求以MN为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2+kx+2y+k2=0所表示的圆有最大的面积,则直线y=(k+1)x+2的倾斜角α=
π
4
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.
(1)求实数m的取值范围;
(2)求该圆半径r的取值范围;
(3)求圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2+4x-2y-4=0,则x2+y2的最大值是
14+6
5
14+6
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+y2-2mx-4y+5m=0的曲线是圆C
(1)求m的取值范围;
(2)当m=-2时,求圆C截直线l:2x-y+1=0所得弦长;
(3)若圆C与直线2x-y+1=0相交于M,N两点,且以MN为直径的圆过坐标原点O,求m的值?

查看答案和解析>>

同步练习册答案