【题目】下图1,是某设计员为一种商品设计的平面logo样式.主体是由内而外的三个正方形构成.该图的设计构思如图2,中间正方形的四个顶点,分别在最外围正方形ABCD的边上,且分所在边为a,b两段.设中间阴影部分的面积为,最内正方形的面积为.当,且取最大值时,定型该logo的最终样式,则此时a,b的取值分别为_____________.
科目:高中数学 来源: 题型:
【题目】如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且.D为线段AC的中点.
(1)求证:平面平面;
(2)若点E在线段PB上,且,求三棱锥体积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为a,b,c,且(b+c)tanC=﹣ctanA.
(1)求A;
(2)若b,c=2,点D在BC边上,且AD=BD,求AD的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下图1,是某设计员为一种商品设计的平面logo样式.主体是由内而外的三个正方形构成.该图的设计构思如图2,中间正方形的四个顶点,分别在最外围正方形ABCD的边上,且分所在边为a,b两段.设中间阴影部分的面积为,最内正方形的面积为.当,且取最大值时,定型该logo的最终样式,则此时a,b的取值分别为_____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左顶点为,两个焦点与短轴一个顶点构成等腰直角三角形,过点且与x轴不重合的直线l与椭圆交于M,N不同的两点.
(Ⅰ)求椭圆P的方程;
(Ⅱ)当AM与MN垂直时,求AM的长;
(Ⅲ)若过点P且平行于AM的直线交直线于点Q,求证:直线NQ恒过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,其中.点在的焦点的右侧,且到的准线的距离是与距离的3倍.经过点的直线与抛物线交于不同的两点,直线与直线交于点,经过点且与直线垂直的直线交轴于点.
(1)求抛物线的方程和的坐标;
(2)判断直线与直线的位置关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】是空气质量的一个重要指标,我国标准采用世卫组织设定的最宽限值,即日均值在以下空气质量为一级,在之间空气质量为二级,在以上空气质量为超标.如图是某地月日到日日均值(单位:)的统计数据,则下列叙述不正确的是( )
A.从日到日,日均值逐渐降低
B.这天的日均值的中位数是
C.这天中日均值的平均数是
D.从这天的日均监测数据中随机抽出一天的数据,空气质量为一级的概率是
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com