精英家教网 > 高中数学 > 题目详情

如图,扇形是一个观光区的平面示意图,其中,半径=1,为了便于游客观光休闲,拟在观光区内铺设一条从入口到出口的观光道路,道路由弧,线段及线段组成,其中在线段上且,设

(1)用表示的长度,并写出的取值范围.
(2)当为何值时,观光道路最长?

(1);(2)设时,取得最大值,即当时,观光道路最长.

解析试题分析:(1)在中,由正弦定理得:



(2)设观光道路长度为

==

得:,又
列表:






+
0
-


极大值

时,取得最大值,即当时,观光道路最长.
考点:本题考查了三角函数的实际运用
点评:对三角函数的考试问题通常有:其一是考查三角函数的性质及图象变换,尤其是三角函数的最大值与最小值、周期。多数题型为选择题或填空题;其次是三角函数式的恒等变形。如运用三角公式进行化简、求值解决简单的综合题等。除在填空题和选择题出现外,解答题的中档题也经常出现这方面内容。
另外,还要注意利用三角函数解决一些应用问题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知△的内角所对的边分别为
(1)若,求的值;
(2)若△的面积,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中为正常数,)的最小正周期为
(1)求的值;
(2)在△中,若,且,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图,甲船以每小时30海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里.当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10海里,问乙船每小时航行多少海里?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分) 在中, 
(Ⅰ)若三边长构成公差为4的等差数列,求的面积
(Ⅱ)已知的中线,若,求的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
中,角所对的边分别为且满足
(I)求角的大小;
(II)求的最大值,并求取得最大值时角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知的两边长分别为,且O为外接圆的圆心.(注:
(1)若外接圆O的半径为,且角B为钝角,求BC边的长;
(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
(文)某种型号汽车的四个轮胎半径相同,均为,该车的底盘与轮胎中心在同一水平面上. 该车的涉水安全要求是:水面不能超过它的底盘高度. 如图所示:某处有一“坑形”地面,其中坑形成顶角为的等腰三角形,且,如果地面上有()高的积水(此时坑内全是水,其它因素忽略不计).
(1)当轮胎与同时接触时,求证:此轮胎露在水面外的高度(从轮胎最上部到水面的距离)为
(2) 假定该汽车能顺利通过这个坑(指汽车在过此坑时,符合涉水安全要求),求的最大值.
(精确到1cm).

查看答案和解析>>

同步练习册答案