精英家教网 > 高中数学 > 题目详情
1.已知直线l:xcosθ+ysinθ+2=0与圆x2+y2=4,则直线l与圆的位置关系是(  )
A.相交B.相离C.相切D.与θ的取值有关

分析 求出圆心(0,0)到直线l:xcosθ+ysinθ+2=0的距离,此距离正好等于半径,故直线和圆相切,由此得出结论.

解答 解:直线l:xcosθ+ysinθ+2=0,圆心(0,0)到直线l:xcosθ+ysinθ+2=0的距离
d=$\frac{2}{\sqrt{co{s}^{2}θ+si{n}^{2}θ}}$=2,正好等于半径,故直线和圆相切.
故选C.

点评 本题主要考查直线和圆的位置关系,点到直线的距离公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.计算:${log_{\sqrt{2}}}4+{e^{ln3}}+{({0.125})^{-\frac{2}{3}}}$=11.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,a,b,c分别为A,B,C的对边,已知a,b,c成等比数列,a2-c2=ac+bc,a=6,则 $\frac{b}{sinB}$=(  )
A.12B.$6\sqrt{2}$C.$4\sqrt{3}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数y=cos2x在区间[0,t]上是减函数,则实数t的取值范围是(0,$\frac{π}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)在R上可导,其导函数为f′(x),若y=(1-x)f′(x)的图象如图所示,则下列结论成立的是(  )
A.函数f(x)有极大值f(-2)和极小值f(2)B.函数f(x)有极大值f(-3)和极小值f(1)
C.函数f(x)有极大值f(-3)和极小值f(3)D.函数f(x)有极大值f(3)和极小值f(-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=2,则|b1|+|b2|+…+|bn|=4n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.M(x0,y0)为圆x2+y2=a2(a>0)内异于圆心的一点,则直线x0x+y0y-a2=0与该圆的位置关系是(  )
A.相切B.相交C.相离D.相切或相交

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知实数x,y满足$\left\{\begin{array}{l}{2x-y-4≥0,}&{\;}\\{x-2y-2≤0,}&{\;}\\{y≤6,}&{\;}\end{array}\right.$则z=$\frac{y+1}{x+2}$的取值范围为[$\frac{1}{4},1$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知Sn是数列{an}的前n项和,且满足2Sn=3an-3(n∈N+),等差数列{bn}的前n项和为Tn,且b5+b13=34,T3=9.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)若数列{cn}的通项公式为cn=anbn,问是否存在互不相等的正整数m,k,r使得m,k,r成等差数列,且cm,ck,cr成等比数列?若存在,求出m,k,r;若不存在,说明理由.

查看答案和解析>>

同步练习册答案