精英家教网 > 高中数学 > 题目详情
8.设数列{an}满足a1=2,an+1+nan=an2+1,n∈N*
(Ⅰ)求a2,a3,a4
(Ⅱ)猜想数列{an}的通项公式,并用数学归纳法证明.

分析 (1)由a1=2,an+1=an2-nan+1,把n=1,2,3分别代入可求a2,a3,a4的值,归纳数列中每一项的值与序号的关系,我们可以归纳推理出an的一个通项公式.
(2)an=n+1的证明可以使用数学归纳法,先证明n=1时等式成立,再假设n=k时等式成立,进而论证n=k+1时,等式依然成立,最终得到等式an=n+1恒成立.

解答 解:(1)由a1=2,得a2=a12-a1+1=3
由a2=3,得a3=a22-2a2+1=4
由a3=4,得a4=a32-3a3+1=5
(2)故猜想an=n+1;
用数学归纳法证明:
①当n=1时,a1=2=1+1,等式成立.
②假设当n=k时等式成立,即ak=k+1,
那么ak+1=ak(ak-k)+1=(k+1)(k+1-k)+1=k+2.
也就是说,当n=k+1时,ak+1=(k+1)+1
据①和②,对于所有n≥1,有an=n+1.

点评 本题考查数列的递推公式,用数学归纳法证明等式成立.证明当n=k+1时命题也成立,是解题的难点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若a=40.4,b=0.44,c=log40.4,则a,b,c的大小关系为a>b>c.(从大到小)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.用数学归纳法证明1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{{{2^n}-1}}>\frac{n}{2}(n∈{N^*})$,假设n=k时成立,则当n=k+1时,不等式左边增加的项数是(  )
A.1B.k-1C.kD.2k

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知实数x,y,z满足x>y>z,且x=z+1,则$\frac{1}{x-y}$+$\frac{4}{y-z}$的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在数列{an}中,a1=2,an+1=$\frac{{a}_{n}}{3{a}_{n}+1}$,n=1,2,3,…
(1)计算a2,a3,a4的值,根据计算结果,猜想{an}的通项公式;
(2)用数字归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在密码学中,直接可以看到内容的为明码,对明码进行某种处理后得到的内容为密码.有一种密码将英文的26个字母a,b,c,…,z(不分大小写)依次对应1,2,3,…,26这26个自然数,见表:
abcdefghijklm
12345678910111213
nopqrstuvwxyz
14151617181920212223242526
给出明码对应的序号x和密码对应的序号y的变换公式:y=$\left\{\begin{array}{l}\frac{x+1}{2},x为奇数,且1≤x≤26\\ \frac{x}{2}+13,x为偶数,且1≤x≤26\end{array}$
利用它可以将明码转换成密码,如5→$\frac{5+1}{2}$=3,即e变成c,8→$\frac{8}{2}$+13=17,即h变成q.按上述公式,若将某明码译成的密码是shxc,那么原来的明码是love.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知O是正三角形ABC内部一点,$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow{0}$,在三角形ABC内随机撒一粒黄豆,落在三角形AOC内的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在平面四边形ABCD中,AD=$\sqrt{6}$,CD=$\sqrt{2}$,∠ABD=60°,∠ADB=75°,
∠ADC=120°.
(1)求BD的长;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知一段演绎推理:“因为指数函数y=ax是增函数,而$y={(\frac{1}{2})^x}$是指数函数,所以$y={(\frac{1}{2})^x}$是增函数”,则这段推理的(  )
A.大前提错误B.小前提错误C.结论正确D.推理形式错误

查看答案和解析>>

同步练习册答案