(本小题共14分)如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,,CC1=4,M是棱CC1上一点.
(Ⅰ)求证:BC⊥AM;
(Ⅱ)若M,N分别是CC1,AB的中点,求证:CN //平面AB1M;
(Ⅲ)若,求二面角A-MB1-C的大小.
证明:(Ⅰ)因为三棱柱ABC-A1B1C1中CC1⊥平面ABC,
所以CC1⊥BC. ……………………1分
因为AC=BC=2,,
所以由勾股定理的逆定理知BC⊥AC. ……………………2分
因为AC∩CC1=C,
所以BC⊥平面ACC1A1. ……………………3分
因为AM平面ACC1A1,
所以BC⊥AM. ……………………4分
(Ⅱ)连结A1B交AB1于P. ……………………5分
因为三棱柱ABC-A1B1C1,
所以P是A1B的中点.
因为M,N分别是CC1,AB的中点,
所以NP // CM,且NP = CM,
所以四边形MCNP是平行四边形, ……………………6分
所以CN//MP. ……………………7分
因为CN平面AB1M,MP平面AB1M, ………………8分
所以CN //平面AB1M. ……………………9分
(Ⅲ)因为BC⊥AC,且CC1⊥平面ABC,
以C为原点,CA,CB,CC1分别为x轴,y轴,z轴建立空间直角坐标系C-xyz.
因为,所以C(0,0,0),A(2,0,0),B1(0,2,4),,,
. ……………………10分
设平面的法向量,则,.
即 ……………………11分
令,则,即.
又平面MB1C的一个法向量是,
所以. ………………12分
由图可知二面角A-MB1-C为锐角,
所以二面角A-MB1-C的大小为. ……………………14分
【解析】略
科目:高中数学 来源: 题型:
(07年北京卷理)(本小题共14分)
如图,在中,,斜边.可以通过以直线为轴旋转得到,且二面角是直二面角.动点的斜边上.
(I)求证:平面平面;
(II)当为的中点时,求异面直线与所成角的大小;
(III)求与平面所成角的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
(07年北京卷文)(本小题共14分)
如图,在中,,斜边.可以通过以直线为轴旋转得到,且二面角的直二面角.是的中点.
(I)求证:平面平面;
(II)求异面直线与所成角的大小.
查看答案和解析>>
科目:高中数学 来源:2013届广东省高二下期中理科数学试卷(解析版) 题型:解答题
(本小题共14分)如图,四棱锥中,底面为平行四边形,,,⊥底面.
(1)证明:平面平面;
(2)若二面角为,求与平面所成角的正弦值。
查看答案和解析>>
科目:高中数学 来源:2011-2012学年北京市丰台区高三上学期期末考试文科数学 题型:解答题
(本小题共14分)如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC,M,N分别是CC1,AB的中点.
(Ⅰ)求证:CN⊥AB1;
(Ⅱ)求证:CN //平面AB1M.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com