精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左焦点为,离心率

(I)求椭圆C的标准方程;

(II)已知直线交椭圆C于A,B两点.

①若直线经过椭圆C的左焦点F,交y轴于点P,且满足.求证:为定值;

②若,求面积的取值范围.

【答案】(1);(2)见解析.

【解析】

(1)根据离心率及焦点坐标可得标准方程.

(2)①设直线方程为,则,联立直线方程和椭圆方程并消去得到关于的方程,其解为.又根据向量关系得到,利用韦达定理可得此式为定值.

②设,则,利用换元法可求面积的取值范围,注意讨论分别与坐标轴重合时的情形.

由题设知,,所以

所以椭圆的标准方程为

①由题设知直线斜率存在,设直线方程为,则.

,直线代入椭圆

所以

.

②当直线分别与坐标轴重合时,易知.

当直线斜率存在且不为0时,设

,直线代入椭圆得到

所以同理

,则

因为,所以,故 ,综上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当b=4时,求的极值;

(2)若在区间上单调递增,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人组成星队参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则星队3分;如果只有一个人猜对,则星队1分;如果两人都没猜对,则星队0分。已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响。各轮结果亦互不影响。假设星队参加两轮活动,求:

星队至少猜对3个成语的概率;

星队两轮得分之和为X的分布列和数学期望EX

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆)的右焦点为,右顶点为,已知,其中为原点,为椭圆的离心率.

(Ⅰ)求椭圆的方程;

(Ⅱ)设过点的直线与椭圆交于点不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点及圆 .

(1)若直线过点且与圆心的距离为,求直线的方程.

(2)设直线与圆交于 两点,是否存在实数,使得过点的直线垂直平分弦?若存在,求出实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)求出函数的定义域;

2)若当时,上恒正,求出的取值范围;

3)若函数上单调递增,求出的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a},全集U=R

(1)AB;

(2),求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校研究性学习小组从汽车市场上随机抽取辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于公里和公里之间将统计结果分成绘制成如图所示的频率分布直方图.

(1)求直方图中的值

(2)求续驶里程在的车辆数

(3)若从续驶里程在的车辆中随机抽取辆车,求其中恰有一辆车的续驶里程在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司想了解对某产品投入的宣传费用与该产品的营业额的影响.右图是以往公司对该产品的宣传费用 (单位:万元)和产品营业额 (单位:万元)的统计折线图.

(Ⅰ)根据折线图可以判断,可用线性回归模型拟合宣传费用与产品营业额的关系,请用相关系数加以说明;

(Ⅱ)建立产品营业额关于宣传费用的回归方程;

(Ⅲ)若某段时间内产品利润与宣传费和营业额的关系为应投入宣传费多少万元才能使利润最大,并求最大利润. (计算结果保留两位小数)

参考数据:

参考公式:相关系数,回归方程中斜率和截距的最小二乘法估计公式分别为

查看答案和解析>>

同步练习册答案