精英家教网 > 高中数学 > 题目详情
11.若a<0,b>0,则下列不等式恒成立的是(  )
A.a2<b2B.$\sqrt{-a}<\sqrt{b}$C.$\frac{1}{a}<\frac{1}{b}$D.$\frac{a}{b}$+$\frac{b}{a}$≥2

分析 根据题意,依次分析选项,对于A、B,举出反例可得其错误,对于C,分析可得$\frac{1}{a}$<0而$\frac{1}{b}$>0,易得C正确,对于D,分析a、b的符号可得$\frac{a}{b}$<0且$\frac{b}{a}$<0,则有$\frac{a}{b}$+$\frac{b}{a}$<0,可得D错误;综合即可得答案.

解答 解:根据题意,依次分析选项:
对于A、若a=-3,而b=1,则a2>b2.故A错误;
对于B、若a=-9,而b=1,则有$\sqrt{-(-9)}$>$\sqrt{a}$,故B错误;
对于C,若a<0,则$\frac{1}{a}$<0,而b>0,则$\frac{1}{b}$>0,故$\frac{1}{a}$<$\frac{1}{b}$,故C正确;
对于D,若a<0,b>0,故$\frac{a}{b}$<0,$\frac{b}{a}$<0,则有$\frac{a}{b}$+$\frac{b}{a}$<0,故D错误;
故选C.

点评 本题考查不等式的性质,关键是熟悉不等式的性质,对于不成立的不等式,可以举出反例,进行判断.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且抛物线y2=4$\sqrt{3}$x的焦点恰好使椭圆C的一个焦点.
(1)求椭圆C的方程
(2)过点D(0,3)作直线l与椭圆C交于A,B两点,点N满足$\overrightarrow{ON}$=$\overrightarrow{OA}+\overrightarrow{OB}$(O为原点),求四边形OANB面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=ax-1+4(其中a>0且a≠1)的图象恒过定点P,则P点坐标是(1,5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)当m=-1时,求A∪B;
(2)若A∩B=∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数$f(x)=\left\{\begin{array}{l}{2^x},x≤3\\{log_2}x,x>3\end{array}\right.$,则f(f(3))=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若两个集合{1,a},{a2}满足{1,a}∪{a2}={1,a}则实数a=-1或0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)的定义域为D,若存在区间[m,n]⊆D使得f(x):
(Ⅰ)f(x)在[m,n]上是单调函数;
(Ⅱ)f(x)在[m,n]上的值域是[2m,2n],
则称区间[m,n]为函数f(x)的“倍值区间”.
下列函数中存在“倍值区间”的有①②④(填上所有你认为正确的序号)
①f(x)=x2; ②$f(x)=\frac{1}{x}$;③$f(x)=x+\frac{1}{x}$;   ④$f(x)=\frac{3x}{{{x^2}+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设集合A={1,3,5,7},B={2,3,4},则A∩B={3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,已知圆O:x2+y2=b2经过椭圆$E:\frac{x^2}{4}+\frac{y^2}{b^2}=1$(0<b<2)的焦点.
(1)求椭圆E的标准方程;
(2)设直线l:y=kx+m交椭圆E于P,Q两点,T为弦PQ的中点,M(-1,0),N(1,0),记直线TM,TN的斜率分别为k1,k2,当2m2-2k2=1时,求k1•k2的值.

查看答案和解析>>

同步练习册答案