精英家教网 > 高中数学 > 题目详情
4.袋中装有6只乒乓球,其中4只是白球,2只黄球,先后从袋中有放回地取出两球,则取到两球都是白球的概率是$\frac{4}{9}$.

分析 第一次和第二次取到白球的概率都是$\frac{4}{6}$,由此能求出连续取两次都是白球的概率.

解答 解:连续取两次都是红球的概率P=$\frac{4}{6}$×$\frac{4}{6}$=$\frac{4}{9}$,
故答案为$\frac{4}{9}$.

点评 本题考查互斥事件概率的计算,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知圆C的方程为:x2+y2+2x-4y+k=0,(k∈R).
(1)求圆心C的坐标;
(2)求实数k的取值范围;
(3)是否存在实数k,使直线l:x-2y+4=0与圆C相交于M、N两点,且OM⊥ON(O为坐标原点)若存在,求出k的值,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.命题“?x>0,ex-x-1≥0”的否定是?x>0,ex-x-1<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)定义域为[0,+∞),当x∈[0,1]时,f(x)=sinπx,当x∈[n,n+1]时,f(x)=$\frac{f(x-n)}{{2}^{n}}$,其中n∈N,若函数f(x)的图象与直线y=b有且仅有2016个交点,则b的取值范围是(  )
A.(0,1)B.($\frac{1}{{2}^{1007}}$,$\frac{1}{{2}^{1006}}$)C.($\frac{1}{{2}^{2017}}$,$\frac{1}{{2}^{2016}}$)D.($\frac{1}{{2}^{1008}}$,$\frac{1}{{2}^{1007}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知a∈R,若f(x)=(x+$\frac{a}{x}$-1)ex在区间(1,3)上有极值点,则a的取值范围是(-∞,-$\frac{27}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系中,点P为曲线C上任意一点,且P到定点F(1,0)的距离比到y轴的距离多1.
(1)求曲线C的方程;
(2)点M为曲线C上一点,过点M分别作倾斜角互补的直线MA,MB与曲线C分别交于A,B两点,过点F且与AB垂直的直线l与曲线C交于D,E两点,若|DE|=8,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数$f(x)=-|x|-\sqrt{x}+3$的零点所在区间为(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一般来说,一个人脚越长,他的身高就越高.现对10名成年人的脚长x(单位:cm)与身高y(单位:cm)进行测量,得如下数据:
x20212223242526272829
y141146154160169176181188197203
作出散点图后,发现散点在一条直线附近.经计算得到一些数据:
$\overline{x}$=24.5,$\overline{y}$=171.5,$\sum_{i=1}^{10}$(xi-$\overline{x}$)(yi-$\overline{y}$)=577.5,$\sum_{i=1}^{10}$(xi-$\overline{x}$)2=82.5
某刑侦人员在某案发现场发现一对裸脚印,量得每个脚印长26.5cm,请你估计案发嫌疑人的身高为(  )
A.185B.185.5C.186D.186.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={x|1<2x<8},集合B={x|0<log2x<1},则A∩B=(  )
A.{x|1<x<3}B.{x|1<x<2}C.{x|2<x<3}D.{x|0<x<2}

查看答案和解析>>

同步练习册答案