精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线和圆,倾斜角为45°的直线过抛物线的焦点,且与圆相切.

1)求的值;

2)动点在抛物线的准线上,动点上,若点处的切线轴于点,设.求证点在定直线上,并求该定直线的方程.

【答案】1;(2)点在定直线上.

【解析】

1)设出直线的方程为,由直线和圆相切的条件:,解得

2)设出,运用导数求得切线的斜率,求得为切点的切线方程,再由向量的坐标表示,可得在定直线上;

解:(1)依题意设直线的方程为

由已知得:圆的圆心,半径

因为直线与圆相切,

所以圆心到直线的距离

,解得(舍去).

所以

2)依题意设,由(1)知抛物线方程为

所以,所以,设,则以为切点的切线的斜率为

所以切线的方程为

,即轴于点坐标为

所以

点坐标为,则

所以点在定直线上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线与曲线,(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.

1)写出曲线的极坐标方程;

2)在极坐标系中,已知的公共点分别为,当时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,,其焦距为,点E为椭圆的上顶点,且

1)求椭圆C的方程;

2)设圆的切线l交椭圆CAB两点(O为坐标原点),求证

3)在(2)的条件下,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①分类变量的随机变量越大,说明“有关系”的可信度越大;

②以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是

③在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;

④若变量满足关系,且变量正相关,则也正相关.

正确的个数是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了迎接2019年全国文明城市评比,某市文明办对市民进行了一次文明创建知识的网络问卷调查.每一位市民有且仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如下表所示:

组别

频数

25

150

200

250

225

100

50

(1)由频数分布表可以认为,此次问卷调查的得分服从正态分布近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求

(2)在(1)的条件下,文明办为此次参加问卷调查的市民制定如下奖励方案:

(i)得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;

(ii)每次获赠的随机话费和对应的概率为:

获赠的随机话费(单位:元)

20

40

概率

现市民小王要参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列及数学期望.

附:①

②若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,过曲线外的一点(其中为锐角)作平行于的直线与曲线分别交于

(Ⅰ) 写出曲线和直线的普通方程(以极点为原点,极轴为 轴的正半轴建系)

)若成等比数列,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】春节期间爆发的新型冠状病毒(COVID-19)是新中国成立以来感染人数最多的一次疫情.一个不知道自己已感染但处于潜伏期的甲从疫区回到某市过春节,回到家乡后与朋友乙、丙、丁相聚过,最终乙、丙、丁也感染了新冠病毒.可以肯定的是乙受甲感染的,丙是受甲或乙感染的,假设他受甲和受乙感染的概率分别是.丁是受甲、乙或丙感染的,假设他受甲、乙和丙感染的概率分别是.在这种假设之下,乙、丙、丁中直接受甲感染的人数为.

1)求的分布列和数学期望;

2)该市在发现在本地出现新冠病毒感染者后,迅速采取应急措施,其中一项措施是各区必须每天及时,上报新增疑似病例人数.区上报的连续天新增疑似病例数据是“总体均值为,中位数”,区上报的连续天新增疑似病例数据是“总体均值为,总体方差为.区和区连续天上报新增疑似病例人数分别为分别表示区和区第天上报新增疑似病例人数(均为非负)..

①试比较的大小;

②求中较小的那个字母所对应的个数有多少组?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

I)求的单调区间;

(Ⅱ)若R上有两个不同的零点,且,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx,若存在x1x2Rx1x2,使得fx1)=fx2)成立,则实数a的取值范围是(

A.[3+∞)B.3+∞)C.(﹣∞,3D.(﹣∞,3]

查看答案和解析>>

同步练习册答案