(1)讨论函数f(x)的单调性;
(2)证明:对任意的实数x1,x2∈[m,n],不等式|f(x1)-f(x2)|<1恒成立.
解:(1)f(x)=()2+()2-2(+)+2=(+)-2(+)+2-,
令t=+,t′=-=,
当x∈[m,]时,t′≤0,函数t=+在[m,]上递减;
当∈[,n]时,t′≥0,函数t=+在[,n]上递增,
则t∈[2,1+],
f(x)=t2-2t+2-=(t-1)2+1-.
∵1≤m<n≤2,∴2>2,t>2,
∴函数f(x)与函数t=+的单调区间相同,
∴f(x)在[m,]上递减,在[,n]上递增.
(2)当x=m或x=n时,f(x)有最大值f(x)max=(-1)2,
当x=时,f(x)有最小值f(x)min=2(-1)2.
∵1≤m<n≤2,∴1<≤2,∴f(x)max-f(x)min=(-1)2-2(-1)2=(-1)2-(2·-2)2
=(-1+·-)(-1-·+)
=(+·--1)[(-)2+-]≤(2+2--1)(2-1-2+)
=(3-)(-1)=4-5<1.
又∵f(x)max-f(x)min>0,∴0<f(x)max-f(x)min<1,
∴|f(x1)-f(x2)|<f(x)max-f(x)min<1.
科目:高中数学 来源: 题型:
|
1 |
π |
查看答案和解析>>
科目:高中数学 来源: 题型:
|
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、[
|
查看答案和解析>>
科目:高中数学 来源: 题型:
x-1 | x+a |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com