精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(-1)2+(-1)2的定义域为[m,n],且1≤m≤n≤2.

(1)讨论函数f(x)的单调性;

(2)证明:对任意的实数x1,x2∈[m,n],不等式|f(x1)-f(x2)|<1恒成立.

解:(1)f(x)=()2+()2-2(+)+2=(+)-2(+)+2-,

    令t=+,t′=-=,

    当x∈[m,]时,t′≤0,函数t=+在[m,]上递减;

    当∈[,n]时,t′≥0,函数t=+在[,n]上递增,

    则t∈[2,1+],

f(x)=t2-2t+2-=(t-1)2+1-.

∵1≤m<n≤2,∴2>2,t>2,

∴函数f(x)与函数t=+的单调区间相同,

∴f(x)在[m,]上递减,在[,n]上递增.

(2)当x=m或x=n时,f(x)有最大值f(x)max=(-1)2,

    当x=时,f(x)有最小值f(x)min=2(-1)2.

∵1≤m<n≤2,∴1<≤2,∴f(x)max-f(x)min=(-1)2-2(-1)2=(-1)2-(2·-2)2

=(-1+·-)(-1-·+)

=(+·--1)[(-)2+-]≤(2+2--1)(2-1-2+)

=(3-)(-1)=4-5<1.

    又∵f(x)max-f(x)min>0,∴0<f(x)max-f(x)min<1,

∴|f(x1)-f(x2)|<f(x)max-f(x)min<1.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案