【题目】某竞赛的题库系统有60%的自然科学类题目,40%的文化生活类题目(假设题库中的题目总数非常大),参赛者需从题库中抽取3个题目作答,有两种抽取方法:方法一是直接从题库中随机抽取3个题目;方法二是先在题库中按照题目类型用分层抽样的方法抽取10个题目作为样本,再从这10个题目中任意抽取3个题目.
(1)两种方法抽取的3个题目中,恰好有1个自然科学类题目和2个文化生活类题目的概率是否相同?若相同,说明理由;若不同,分别计算出两种抽取方法对应的概率.
(2)已知某参赛者抽取的3个题目恰好有1个自然科学类题目和2个文化生活类题目,且该参赛者答对自然科学类题目的概率为,答对文化生活类题目的概率为.设该参赛者答对的题目数为X,求X的分布列和数学期望.
【答案】(1)两种抽取方法得到的概率不同(2)见解析
【解析】
(1)分别计算两种方法下概率,再比较,(2)先确定随机变量,再分别求对应概率,列表得分布列,最后根据数学期望公式求期望.
(1)两种抽取方法得到的概率不同.
方法一:由于题库中题目总数非常大,可以认为每抽取1个题目,抽到自然科学类题目的概率均为,抽到文化生活类题目的概率均为,所以抽取的3个题目中恰好有1个自然科学类题目和2个文化生活类题目的概率为× ()=.
方法二:按照题目类型用分层抽样抽取的10个题目中有6个自然科学类题目和4个文化生活类题目,从这10个题目中抽取3个题目,恰好有1个自然科学类题目和2个文化生活类题目的概率为=
(2)由题意得,X的所有可能取值为0,1,2,3.
P(X=0)==,
P(X=1)= ++=
P(X=2)= ++=,P(X=3)= =.
所以X的分布列为
X | 0 | 1 | 2 | 3 |
P |
X的数学期望E(X)=0× +1× +2× +3×=.
科目:高中数学 来源: 题型:
【题目】在一个不透明的箱子里放有四个质地相同的小球,四个小球标的号码分别为1,1,2,3.现甲、乙两位同学依次从箱子里随机摸取一个球出来,记下号码并放回.
(Ⅰ)求甲、乙两位同学所摸的球号码相同的概率;
(Ⅱ)求甲所摸的球号码大于乙所摸的球号码的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以平面直角坐标系原点O为极点,以x轴非负半轴为极轴,以平面直角坐标系的长度单位为长度单位建立极坐标系.已知直线l的参数方程为 (t为参数),曲线C的极坐标方程为ρsin2θ=4cosθ
(Ⅰ) 求曲线C的直角坐标方程;
(Ⅱ) 设直线l与曲线C相交于A,B两点,求|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a>0,b>0( )
A.若lna+2a=lnb+3b,则a>b
B.2a+2a=2b+3b,则a<b
C.若lna﹣2a=lnb﹣3b,则a>b
D.2a﹣2a=2b﹣3b,则a<b
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= sinωxcosωx﹣cos2ωx﹣ (ω>0,x∈R)的图象上相邻两个最高点的距离为π.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若△ABC三个内角A、B、C的对边分别为a、b、c,且c= ,f(C)=0,sinB=3sinA,求a,b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若图所示,将若干个点摆成三角形图案,每条边(包括两个端点)n(n>1,n∈N*)个点,相应的图案中总的点数记为an , 则 + + +…+ = .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】f(x)的定义域为(0,+∞),且对一切x>0,y>0都有f=f(x)-f(y),当x>1时,有f(x)>0。
(1)求f(1)的值;
(2)判断f(x)的单调性并证明;
(3)若f(6)=1,解不等式f(x+3)-f<2;
(4)若f(4)=2,求f(x)在[1,16]上的值域。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com