精英家教网 > 高中数学 > 题目详情

已知函数y=f(x)在R上为奇函数,且当x≥0时,f(x)=x2-2x,则当x<0时,f(x)的解析式是


  1. A.
    f(x)=-x(x+2)
  2. B.
    f(x)=x(x-2)
  3. C.
    f(x)=-x(x-2)
  4. D.
    f(x)=x(x+2)
A
分析:利用函数的奇偶性求对称区间上的解析式要先取x<0则-x>0,代入当x≥0时,f(x)=x2-2x,求出f(-x),再根据奇函数的性质得出f(-x)=-f(x)两者代换即可得到x<0时,f(x)的解析式
解答:任取x<0则-x>0,
∵x≥0时,f(x)=x2-2x,
∴f(-x)=x2+2x,①
又函数y=f(x)在R上为奇函数
∴f(-x)=-f(x)②
由①②得x<0时,f(x)=-x(x+2)
故选A
点评:本题考查奇函数的性质,考查利用函数的奇偶性求对称区间上的解析式,这是函数奇偶性的一个重要应用,做对此类题的关键是正确理解定义及本题的做题格式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、已知函数y=f(x)是R上的奇函数且在[0,+∞)上是增函数,若f(a+2)+f(a)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知函数y=f(x+1)的图象过点(3,2),则函数f(x)的图象关于x轴的对称图形一定过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是偶函数,当x<0时,f(x)=x(1-x),那么当x>0时,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,当x>0 时,f(x)的图象如图所示,则不等式x[f(x)-f(-x)]≤0 的解集为
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图,则满足f(log2(x-1))•f(2-x2-1)≥0的x的取值范围为
(1,3]
(1,3]

查看答案和解析>>

同步练习册答案