精英家教网 > 高中数学 > 题目详情

【题目】关于函数.有下列命题:

①对,恒有成立.

,使得成立.

③“若,则有.”的否命题.

④“若,则有.”的逆否命题.

其中,真命题有_____________.(只需填序号)

【答案】①②③

【解析】

,可判定①是真命题;令,得到,可判定②是真命题;根据二次函数的性质和四种命题的等价关系,可判定③是真命题,④是假命题.

由题意,设,所以,即对,恒有成立,所以①是真命题;

,可得,此时,即,使得成立,所以②是真命题;

因为当时,函数单调递减,所以

时,函数单调递减,所以

所以命题“若,则有”是真命题,所以④是假命题;

又由命题“若,则有”与命题“若,则有”互为逆否关系,所以命题“若,则有”是真命题,所以③是真命题,

综上可得,①②③是真命题.

故答案为:①②③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的普通方程为,曲线参数方程为为参数);以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.

(1)求的参数方程和的直角坐标方程;

(2)已知上参数对应的点,上的点,求中点到直线的距离取得最小值时,点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个棱长为的正方体形状的铁盒内放置一个正四面体,且能使该正四面体在铁盒内任意转动,则该正四面体的体积的最大值是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过多年的努力,炎陵黄桃在国内乃至国际上逐渐打开了销路,成为炎陵部分农民脱贫致富的好产品.为了更好地销售,现从某村的黄桃树上随机摘下了100个黄桃进行测重,其质量分布在区间内(单位:克),统计质量的数据作出其频率分布直方图如图所示:

(1)按分层抽样的方法从质量落在的黄桃中随机抽取5个,再从这5个黄桃中随机抽2个,求这2个黄桃质量至少有一个不小于400克的概率;

(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该村的黄桃树上大约还有100000个黄桃待出售,某电商提出两种收购方案:

A.所有黄桃均以20/千克收购;

B.低于350克的黄桃以5/个收购,高于或等于350克的以9/个收购.

请你通过计算为该村选择收益最好的方案.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司培训员工某项技能,培训有如下两种方式:

方式一:周一到周五每天培训1小时,周日测试

方式二:周六一天培训4小时,周日测试

公司有多个班组,每个班组60人,现任选两组记为甲组、乙组先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如表:

第一周

第二周

第三周

第四周

甲组

20

25

10

5

乙组

8

16

20

16

用方式一与方式二进行培训,分别估计员工受训的平均时间精确到,并据此判断哪种培训方式效率更高?

在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表是某地一家超市在2018年一月份某一周内周2到周6的时间与每天获得的利润(单位:万元)的有关数据.

星期

星期2

星期3

星期4

星期5

星期6

利润

2

3

5

6

9

1)根据上表提供的数据,用最小二乘法求线性回归直线方程

2)估计星期日获得的利润为多少万元.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是圆上的动点,点轴上的投影,且.

1)当在圆上运动时,求点的轨迹的方程;

2)求过点(1,0),倾斜角为的直线被所截线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=2sinxxcosxxf′x)为fx)的导数.

1)证明:f′x)在区间(0π)存在唯一零点;

2)若x[0π]时,fxax,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面.

(Ⅰ)求证:平面

(Ⅱ)求直线与平面所成角的正弦值;

(Ⅲ)若二面角的余弦值为,求线段的长.

查看答案和解析>>

同步练习册答案