分析 (1)由$tanA=\frac{3}{4},0<A<π$,可得A为锐角,利用同角三角函数基本关系式可得sinA,cosA.再利用正弦定理余弦定理即可得出.
(2)由$S=\frac{1}{2}acsinB=6sinBsinC$,得$ac=\frac{{6\sqrt{2}}}{5}$,又$a=3\sqrt{2}c$,联立解出即可得出.
解答 解:(1)∵$tanA=\frac{3}{4},0<A<π$,
∴A为锐角,
∴$sinA=\frac{3}{5},cosA=\frac{4}{5}$,
由余弦定理及b=5c,可得a2=b2+c2-2bccosA=18c2,即$a=3\sqrt{2}c$.
由正弦定理可得$sinC=\frac{csinA}{a}=\frac{{\sqrt{2}}}{10}$.
(2)由$S=\frac{1}{2}acsinB=6sinBsinC$,得$ac=\frac{{6\sqrt{2}}}{5}$,
又$a=3\sqrt{2}c$,解得$a=\frac{{6\sqrt{5}}}{5}$.
点评 本题考查了正弦定理余弦定理、三角函数求值、同角三角函数基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\sqrt{3}$ | D. | $504\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 关于直线x=$\frac{π}{4}$对称 | B. | 关于点($\frac{3π}{16}$,0)对称 | ||
C. | 关于直线x=$\frac{3π}{16}$对称 | D. | 关于点($\frac{π}{16}$,0)对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com