精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an},{bn}满足a1=1,an+1=2an+1,b1=4,bn﹣bn1=an+1(n≥2).
(1)求证:数列{an+1}是等比数列;
(2)求数列{an},{bn}的通项公式.

【答案】
(1)

证明:由an+1=2an+1得an+1+1=2(an+1),

又an+1≠0,∴ ,即{an+1}为等比数列.


(2)

解:由(1)知an+1=(a1+1)qn1=22n1=2n

将以上n﹣1个式子累加可得 ,又b1=4,


【解析】(1)由an+1=2an+1得an+1+1=2(an+1),即可证明.(2)由(1)知an+1=2n , 可得: ,利用“累加求和”方法与等比数列的求和公式即可得出.
【考点精析】解答此题的关键在于理解等比数列的通项公式(及其变式)的相关知识,掌握通项公式:,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】先后抛掷两枚大小相同的骰子.

1)求点数之和出现7点的概率;
2)求出现两个6点的概率;

(3)求点数之和能被3整除的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形, 中点, 的中点.

证明:

求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线与抛物线相交于不同两点,与圆相切于点,且为线段中点

(1)是正三角形(是坐标原点),求此三角形的边长;

(2) 若,求直线的方程

(3)进行讨论,请你写出符合条件的直线(直接写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域均为,且是奇函数,是偶函数,,其中为自然对数的底数.

(1)求的解析式,并证明:当时,

(2)若关于的不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)满足:f(x)= ,且f(x+2)=f(x),g(x)= ,则方程f(x)=g(x)在区间[﹣5,1]上的所有实根之和为(
A.﹣5
B.﹣6
C.﹣7
D.﹣8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ< )的图象与x轴的交点中,相邻两个交点之间的距离为 ,且图象上一个最高点为M( ,3).
(1)求f(x)的解析式;
(2)先把函数y=f(x)的图象向左平移 个单位长度,然后再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图象,试写出函数y=g(x)的解析式.
(3)在(2)的条件下,若总存在x0∈[﹣ ],使得不等式g(x0)+2≤log3m成立,求实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=4cos2x﹣4 sinxcosx的最小正周期为π(>0).
(1)求的值;
(2)若f(x)的定义域为[﹣ ],求f(x)的最大值与最小值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调区间;

(2)若直线的图象恒在函数图象的上方,求的取值范围.

查看答案和解析>>

同步练习册答案