精英家教网 > 高中数学 > 题目详情

【题目】已知全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2},
(1)求A∩B、(UA)∪(UB);
(2)若集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,求实数k的取值范围.

【答案】
(1)解:因为全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2}={x|﹣2≤x≤3},

所以A∩B={x|1<x≤3};

(CUA)∪(CUB)=CU(A∩B)={x|x≤1,或x>3}


(2)解:①当M=时,2k﹣1>2k+1,不存在这样的实数k.

②当M≠时,则2k+1<﹣4或2k﹣1>1,解得k 或k>1


【解析】(1)求出集合B,然后直接求A∩B,通过(CUA)∪(CUB)CU(A∩B)求解即可;(2)通过M=与M≠,利用集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,直接求实数k的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形为等腰梯形,相交于,且,矩形底面为线段上一动点,满足.

(Ⅰ)若平面,求实数的值;

(Ⅱ)当时,锐二面角的余弦值为,求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中, 都是边长为2的等边三角形,设在底面的射影为

(1)证明:

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (常数a∈R).
(1)判断函数f(x)的奇偶性,并证明;
(2)若f(1)=2,证明函数f(x)在(1,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解方程:
(1) =3;
(2)log4(3x﹣1)=log4(x﹣1)+log4(3+x).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=lnx﹣ 的零点所在的大致区间是(
A.(1,2)
B.(2,3)
C.(e,3)
D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在斜三棱柱中,,平面底面,点、D分别是线段、BC的中点.

(1)求证:

(2)求证:AD//平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,正确的命题有__________

①回归直线恒过样本点的中心,且至少过一个样本点;

②将一组数据的每个数据都加一个相同的常数后,方差不变;

③用相关指数来刻画回归效果, 越接近,说明模型的拟合效果越好;

④用系统抽样法从名学生中抽取容量为的样本,将名学生从编号,按编号顺序平均分成组(号, 号, 号),若第组抽出的号码为,则第一组中用抽签法确定的号码为号.

查看答案和解析>>

同步练习册答案