精英家教网 > 高中数学 > 题目详情
17.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的短轴长为2$\sqrt{3}$,离心率e=$\frac{1}{2}$,
(1)求椭圆C的标准方程:
(2)若F1、F2分别是椭圆C的左、右焦点,过F2的直线l与椭圆C交于不同的两点A、B,求△F1AB的面积的最大值.

分析 (1)由题意可知:2b=2$\sqrt{3}$,b=$\sqrt{3}$,椭圆的离心率e=$\frac{c}{a}$=$\frac{1}{2}$,则a=2c,代入a2=b2+c2,求得a,即可求得椭圆C的标准方程;
(2)设直线l的方程为x=my+1,代入椭圆方程,则${S_{△{F_1}AB}}=\frac{1}{2}|{{F_1}{F_2}}|•|{{y_1}-{y_2}}|=|{{y_1}-{y_2}}|=\sqrt{{{({{y_1}+{y_2}})}^2}-4{y_1}{y_2}}=\frac{{12\sqrt{{m^2}+1}}}{{3{m^2}+4}}$,令$t=\sqrt{{m^2}+1}$,则t≥1,由函数的单调性,即可求得△F1AB的面积的最大值.

解答 解:(1)由题意可得$\left\{{\begin{array}{l}{2b=2\sqrt{3}}\\{\frac{c}{a}=\frac{1}{2}}\\{{a^2}={b^2}+{c^2}}\end{array}}\right.$,…(2分)
解得:$a=2,b=\sqrt{3}$,…(3分)
故椭圆的标准方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$;…(4分)
(2)设A(x1,y1),B(x2,y2),${S_{△{F_1}AB}}=\frac{1}{2}|{{F_1}{F_2}}|•|{{y_1}-{y_2}}|=|{{y_1}-{y_2}}|$…(6分)
由题意知,直线l的斜率不为零,可设直线l的方程为x=my+1,
由$\left\{{\begin{array}{l}{x=my+1}\\{\frac{x^2}{4}+\frac{y^2}{3}=1}\end{array}}\right.$,整理得:(3m2+4)y2+6my-9=0,
由韦达定理可知:${y_1}+{y_2}=\frac{-6m}{{3{m^2}+4}},{y_1}{y_2}=\frac{-9}{{3{m^2}+4}}$,…(8分)
又因直线l与椭圆C交于不同的两点,
故△>0,即(6m)2+36(3m2+4)>0,m∈R.
则${S_{△{F_1}AB}}=\frac{1}{2}|{{F_1}{F_2}}|•|{{y_1}-{y_2}}|=|{{y_1}-{y_2}}|=\sqrt{{{({{y_1}+{y_2}})}^2}-4{y_1}{y_2}}=\frac{{12\sqrt{{m^2}+1}}}{{3{m^2}+4}}$,…(10分)
令$t=\sqrt{{m^2}+1}$,则t≥1,
则${S_{△{F_1}AB}}=\frac{{12\sqrt{{m^2}+1}}}{{3{m^2}+4}}=\frac{12t}{{3{t^2}+1}}=\frac{4}{{t+\frac{{\frac{1}{3}}}{t}}}$,
令$f(t)=t+\frac{{\frac{1}{3}}}{t}$,由函数的性质可知,函数f(t)在$[{\frac{{\sqrt{3}}}{3},+∞})$上是单调递增函数,
即当t≥1时,f(t)在[1,+∞)上单调递增,
因此有$f(t)≥f(1)=\frac{4}{3}$,
所以${S_{△{F_1}AB}}≤3$,
即当t=1,即m=0时,${S_{△{F_1}AB}}$最大,最大值为3.…(12分)

点评 本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,考查韦达定理与弦长公式的应用,考查椭圆与函数的综合应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知f(x)=xlnx,g(x)=x3+ax2-x+2
(1)求函数f(x)的单调区间;
(2)求函数f(x)在[t,t+2](t>0)上的最小值;
(3)对一切的x,2f(x)≤g′(x)+2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知(x+2)n=a0+a1(x-1)+a2(x-1)2…+an(x-1)n(n∈N*).
(1)求a0及Sn=$\sum_{i=1}^{n}$ai
(2)试比较Sn与(n-2)3n+2n2的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:
喜欢游泳不喜欢游泳合计
男生10
女生20
合计
已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为$\frac{3}{5}$.
(1)请将上述列联表补充完整:并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;
(2)针对于问卷调查的100名学生,学校决定从喜欢游泳的人中按分层抽样的方法随机抽取6人成立游泳科普知识宣传组,并在这6人中任选2人作为宣传组的组长,设这两人中男生人数为X,求X的分布列和数学期望.
下面的临界值表仅供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设x,y满足约束条件$\left\{{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}}\right.$,则z=-2x+y的最小值为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=ln$\frac{3x}{2}$-$\frac{2}{x}$的零点一定位于区间(  )
A.(0,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)的定义域为[-1,1],图象如图1所示;函数g(x)的定义域为[-2,2],图象如图2所示,方程f[g(x)]=0有m个实数根,方程g[f(x)]=0有n个实数根,则m+n=14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-6x+a,则不等式f(x)<|x|的解集是(  )
A.(0,7)B.(-5,7)C.(-5,0)D.(-∞,-5)∪(0,7)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,直线y=kx将抛物线y=x-x2与x轴所围图形分成面积相等的两部分,则k=1-$\frac{\root{3}{4}}{2}$.

查看答案和解析>>

同步练习册答案