【题目】已知椭圆的离心率为,且过点.
(Ⅰ)求椭圆的方程.
(Ⅱ)若, 是椭圆上两个不同的动点,且使的角平分线垂直于轴,试判断直线的斜率是否为定值?若是,求出该值;若不是,说明理由.
【答案】(1)(2)
【解析】试题分析:(I)由离心率可得关系,再将点坐标代入,可得间关系,又,解方程可得的值;(II)由的角平分线总垂直于轴,可判断直线的斜率互为相反数,由两直线都过点,由点斜式可写出直线方程.一一与椭圆方程联立,消去的值,可得一元二次方程,又点满足条件,可求得点的坐标,用表示.再由斜率公式可得直线的斜率为定值.
试题解析:
(Ⅰ) 因为椭圆的离心率为, 且过点,
所以, .
因为,
解得, ,
所以椭圆的方程为.
(Ⅱ)法1:因为的角平分线总垂直于轴, 所以与所在直线关于直线对
称. 设直线的斜率为, 则直线的斜率为.
所以直线的方程为,直线的方程为.
设点, ,
由消去,得. ①
因为点在椭圆上, 所以是方程①的一个根, 则,
所以.
同理.
所以.
又.
所以直线的斜率为.
所以直线的斜率为定值,该值为.
法2:设点,
则直线的斜率, 直线的斜率.
因为的角平分线总垂直于轴, 所以与所在直线关于直线对称.
所以, 即, ①
因为点在椭圆上,
所以,②
. ③
由②得, 得, ④
同理由③得, ⑤
由①④⑤得,
化简得, ⑥
由①得, ⑦
⑥⑦得.
②,得.
所以直线的斜率为为定值.
法3:设直线的方程为,点,
则,
直线的斜率, 直线的斜率.
因为的角平分线总垂直于轴, 所以与所在直线关于直线对称.
所以, 即,
化简得.
把代入上式, 并化简得
. (*)
由消去得, (**)
则,
代入(*)得,
整理得,
所以或.
若, 可得方程(**)的一个根为,不合题意.
若时, 合题意.
所以直线的斜率为定值,该值为.
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为集合A,B={x|x<a}.
(1)求集合A;
(2)若AB,求a的取值范围;
(3)若全集U={x|x≤4},a=-1,求U A及A∩(U B).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:经过点,离心率,直线的方程为 .
(1)求椭圆的方程;
(2)经过椭圆右焦点的任一直线(不经过点)与椭圆交于两点,,设直线与相交于点,记的斜率分别为,问:是否为定值,若是,求出此定值,若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的三个内角A、B、C所对的边分别是a、b、c,向量m=(cos B,cos C),n=(2a+c,b),且m⊥n.
(1)求角B的大小;
(2)若b=,求a+c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4;坐标系与参数方程
在直角坐标系中,直线的参数方程为(为参数).在以坐标原点为极点, 轴正半轴为极轴的极坐标中,曲线.
(Ⅰ)求直线的普通方程和曲线的直角坐标方程.
(Ⅱ)求曲线上的点到直线的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在内,则为合格品,否则为不合格品.表1是甲流水线样本的频数分布表,图1是乙流水线样本的频率分布直方图.
(Ⅰ)根据图1,估计乙流水线生产产品该质量指标值的中位数;
(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两条流水线分别生产出不合格品约多少件?
(Ⅲ)根据已知条件完成下面列联表,并回答是否有85%的把握认为“该企业生产的这种产品的质量指标值与甲,乙两条流水线的选择有关”?
甲生产线 | 乙生产线 | 合计 | |
合格品 | |||
不合格品 | |||
合计 |
附:(其中为样本容量)
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥的底面为矩形,D为的中点,AC⊥平面BCC1B1.
(Ⅰ)证明:AB//平面CDB1;
(Ⅱ)若AC=BC=1,BB1=,
(1)求BD的长;
(2)求B1D与平面ABB1所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知如图,六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABCDEF.则下列结论不正确的是( )
A. CD∥平面PAF
B. DF⊥平面PAF
C. CF∥平面PAB
D. CF⊥平面PAD
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com