三角形的面积为为三角形的边长,r为三角形内切圆的半径,利用类比推理,可得出四面体的体积为( )
A.
B.
C.
D.(分别为四面体的四个面的面积,r为四面体内切球的半径)
D
【解析】
试题分析:根据平面与空间之间的类比推理,由点类比点或直线,由直线 类比 直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可.解:设四面体的内切球的球心为O,则球心O到四个面的距离都是r,根据三角形的面积的求解方法:分割法,将O与四顶点连起来,可得四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和,∴,故选D.
考点:类比推理
点评:类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想)
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源:2002年全国各省市高考模拟试题汇编 题型:044
设∈C,且满足,∈(,π).
(Ⅰ)求的三角形式;
(Ⅱ)设分别对应复平面上点,且,arg()=,求及三角形的面积(O为坐标原点).
查看答案和解析>>
科目:高中数学 来源:2013年上海市静安区高考数学一模试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2013年上海市静安区高考数学一模试卷(文科)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com