精英家教网 > 高中数学 > 题目详情
14.已知f(x)是定义在R上的奇函数,对任意x∈R,都有f(x+4)=f(x),若f(1)=2,则f(2015)=-2.

分析 根据已知中函数的奇偶性和周期性,可得f(2015)=f(-1)=-f(1).

解答 解:∵f(x)是定义在R上的奇函数,
∴f(-x)=-f(x),
又∵对任意x∈R,都有f(x+4)=f(x),
∴f(x)是周期为4的周期函数,
故f(2015)=f(-1)=-f(1)=-2,
故答案为:-2

点评 本题考查的知识点是函数的奇偶性和周期性,函数求值,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.在△ABC中,tan$\frac{A+B}{2}$=2sinC,若AB=1,则△ABC周长的取值范围(2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.过点(0,2)且与抛物线y2=4x只有一个公共点的直线有(  )
A.1条B.2条C.3条D.无数条

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.平面内给定三个向量$\overrightarrow{a}$=(3,2),$\overrightarrow{b}$=(-1,2),$\overrightarrow{c}$=(4,1),若($\overrightarrow{a}$+k$\overrightarrow{c}$)∥(2$\overrightarrow{b}$-$\overrightarrow{a}$),则实数k等于$-\frac{16}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=4x2-kx-8在[5,+∞)上是单调递增函数,
(1)求实数k的取值范围;
(2)当k取(1)问中的最大值时,设g(x)是定义在R上的奇函数,当x>0时,g(x)=f(x),求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法正确的是(  )
A.如果两条直线都与第三条直线垂直,那么这两条直线互相垂直
B.如果两个平面都与第三个平面垂直,那么这两个平面互相垂直
C.如果两个平面都与同一条直线垂直,那么这两个平面互相垂直
D.如果两个平行平面同时和第三个平面相交,那么它们的交线平行

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2-alnx(a∈R)
(1)若a=2,求函数f(x)的极值;
(2)已知函数f(x)在点A(1,f(1))处的切线为l,若此切线在点A处穿过y=f(x)的图象(即函数f(x)上的动点P在点A附近沿曲线y=f(x)运动,经过点A时从l的一侧进入另一侧),求函数f(x)的表达式;
(3)若a>0,函数g(x)=f(x)-ax有且只有一个零点,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.“事件A,B互斥”是“事件A,B对立”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,如果a=2,c=2$\sqrt{3}$,∠A=30°,那么△ABC的面积等于2$\sqrt{3}$或$\sqrt{3}$.

查看答案和解析>>

同步练习册答案