精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率是,上顶点坐标为.

1)求椭圆的方程;

2)问是否存在斜率为1的直线与椭圆交于两点,为椭圆的右焦点,的重心分别为,且以线段直径的圆过原点,若存在,求出直线的方程;若不存在,请说明理由.

【答案】1;(2)存在,

【解析】

1)根据离心率、上顶点坐标和椭圆关系可构造方程组求得,进而得到椭圆方程;

2)由圆的性质可知,由重心坐标可将其化为,将直线方程与椭圆方程联立,得到韦达定理的形式,代入上述等式后即可得到关于的方程,解方程求得,进而得到所求直线方程.

1)由题意得:,解得:

即所求椭圆的方程为.

2)假设存在这样的直线,设其方程为.

得:

,解得:.

,则

由题意知,以线段为直径的圆过原点,,则

,解得:.

所以存在这样的直线,其方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|x1|+|2x+2|gx)=|x+2||x2a|+a.

1)求不等式fx)>4的解集;

2)对x1Rx2R,使得fx1)≥gx2)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场为迎接“618年中庆典,拟推出促销活动,活动规则如下:①活动期间凡在商场内购物,每满673元可参与一次现金红包抽奖,且互不影响,详细如下表:

奖项

一等奖

二等奖

奖金

200元现金红包

优惠餐券1张(价值50元)

获奖率

30%

70%

②活动期间凡在商场内购物,每满2019元可参与消费返现,返现金额为实际消费金额的15%.规定每位顾客只可选择参加其中一种优惠活动.

1)现有顾客甲在商场消费2019元,若其选择参与抽奖,求其可以获得现金红包的概率.

2)现有100名消费金额为2019元的顾客正在等待抽奖,假如你是该商场的活动策划人,你更希望顾客参与哪项优惠活动?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的多面体中,四边形是边长为2的正方形,平面.

(1)设BDAC的交点为O,求证:平面

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业拟对某条生产线进行技术升级,现有两种方案可供选择:方案是报废原有生产线,重建一条新的生产线;方案是对原有生产线进行技术改造.由于受诸多不可控因素的影响,市场销售状态可能会发生变化.该企业管理者对历年产品销售市场行情及回报率进行了调研,编制出下表:

市场销售状态

畅销

平销

滞销

市场销售状态概率

预期平均年利润(单位:万元)

方案

700

400

方案

600

300

1)以预期平均年利润的期望值为决策依据,问:该企业应选择哪种方案?

2)记该生产线升级后的产品(以下简称新产品)的年产量为(万件),通过核算,实行方案时新产品的年度总成本(万元)为,实行方案时新产品的年度总成本(万元)为.已知.若按(1)的标准选择方案,则市场行情为畅销、平销和滞销时,新产品的单价(元)分别为60,且生产的新产品当年都能卖出去.试问:当取何值时,新产品年利润的期望取得最大值?并判断这一年利润能否达到预期目标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,来自一带一路沿线的20国青年评选出了中国的新四大发明:高铁、扫码支付、共享单车和网购.其中共享单车既响应绿色出行号召,节能减排,保护环境,又方便人们短距离出行,增强灵活性.某城市试投放3个品牌的共享单车分别为红车、黄车、蓝车,三种车的计费标准均为每15分钟(不足15分钟按15分钟计)1元,按每日累计时长结算费用,例如某人某日共使用了24分钟,系统计时为30分钟.A同学统计了他1个月(按30天计)每天使用共享单车的时长如茎叶图所示,不考虑每月自然因素和社会因素的影响,用频率近似代替概率.设A同学每天消费元.

1)求的分布列及数学期望;

2)各品牌为推广用户使用,推出APP注册会员的优惠活动:红车月功能使用费8元,每天消费打5折;黄车月功能使用费20元,每天前15分钟免费,之后消费打8折;蓝车月功能使用费45元,每月使用22小时之内免费,超出部分按每15分钟1元计费.设分别为红车,黄车,蓝车的月消费,写出的函数关系式,参考(1)的结果,A同学下个月选择其中一个注册会员,他选哪个费用最低?

3)该城市计划3个品牌的共享单车共3000辆正式投入使用,为节约居民开支,随机调查了100名用户一周的平均使用时长如下表:

时长

(015]

(1530]

(3045]

(4560]

人数

16

45

34

5

在(2)的活动条件下,每个品牌各应该投放多少辆?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】呼和浩特市地铁一号线于20191229日开始正式运营有关部门通过价格听证会,拟定地铁票价后又进行了一次调查.调查随机抽查了50人,他们的月收入情况与对地铁票价格态度如下表:

月收入(单位:百元)

认为票价合理的人数

1

2

3

5

3

4

认为票价偏高的人数

4

8

12

5

2

1

1)若以区间的中点值作为月收入在该区间内人的人均月收入求参与调查的人员中认为票价合理者的月平均收入与认为票价偏高者的月平均收入的差是多少(结果保留2位小数);

2)由以上统计数据填写下面列联表分析是否有的把握认为月收入以5500元为分界点对地铁票价的态度有差异

月收入不低于5500元人数

月收入低于5500元人数

合计

认为票价偏高者

认为票价合理者

合计

附:

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,已知成等差数列,且

1)求数列的通项公式;

2)记,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点A10),动点M满足以MA为直径的圆与y轴相切.过A作直线x+m1y+2m50的垂线,垂足为B,则|MA|+|MB|的最小值为(

A.2B.2C.D.3

查看答案和解析>>

同步练习册答案