精英家教网 > 高中数学 > 题目详情

(本题满分15分)已知椭圆上的动点到焦点距离的最小值为。以原点为圆心、椭圆的短半轴长为半径的圆与直线相切.

(Ⅰ)求椭圆的方程;

(Ⅱ)若过点(2,0)的直线与椭圆相交于两点,为椭圆上一点, 且满足

为坐标原点)。当 时,求实数的值.

 

【答案】

(Ⅰ)故椭圆的方程为.(Ⅱ)   。

【解析】本题综合考查椭圆的性质及应用和直线与椭圆的位置关系,具有较大的难度,解题时要注意的灵活运用.

(1)由题设条件可知 a-c的值,然后利用以原点为圆心、椭圆的短半轴长为半径的圆与直线相切,得到椭圆C的标准方程.

(2)设出直线方程与椭圆联立方程组,结合韦达定理和向量的关系式,得到参数k与t的关系式,进而得到结论。

解:(Ⅰ)由题意知;        ………………2分

又因为,所以.          ………………4分

故椭圆的方程为.              ………………5分

(Ⅱ)设直线的方程为

.           ……………………7分

.                 ……………………9分

.又由,得,

                                   ……………………11分

可得.                                            ……………………12分

又由,得,则.               ……………………13分

,即.   ……………………14分

得,,即                                ……………………15分

 

练习册系列答案
相关习题

科目:高中数学 来源:2013届浙江省余姚中学高三上学期期中考试文科数学试卷(带解析) 题型:解答题

(本题满分15分)已知点(0,1),,直线都是圆的切线(点不在轴上).
(Ⅰ)求过点且焦点在轴上的抛物线的标准方程;
(Ⅱ)过点(1,0)作直线与(Ⅰ)中的抛物线相交于两点,问是否存在定点使为常数?若存在,求出点的坐标及常数;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源:2013届江苏省扬州市高二下期中数学试卷(解析版) 题型:解答题

(本题满分15分)

已知命题p,命题q. 若“pq”为真命题,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省桐乡市高三10月月考理科数学 题型:解答题

(本题满分15分)已知函数

(Ⅰ)若为定义域上的单调函数,求实数m的取值范围;

(Ⅱ)当时,求函数的最大值;

(Ⅲ)当,且时,证明:

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省桐乡市高三下学期2月模拟考试文科数学 题型:解答题

(本题满分15分)已知圆N:和抛物线C:,圆的切线与抛物线C交于不同的两点A,B,

(1)当直线的斜率为1时,求线段AB的长;

(2)设点M和点N关于直线对称,问是否存在直线使得?若存在,求出直线的方程;若不存在,请说明理由.

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:杭州市2010年第二次高考科目教学质量检测 题型:解答题

(本题满分15分)已知直线,曲线

   (1)若且直线与曲线恰有三个公共点时,求实数的取值;

   (2)若,直线与曲线M的交点依次为A,B,C,D四点,求|AB+|CD|的取值范围。[来源:Z+xx+k.Com]

      

 

查看答案和解析>>

同步练习册答案