精英家教网 > 高中数学 > 题目详情

(本题满分12分)
某市统计局就某地居民的月收入调查了10000人,他们的月收入均在内.现根据所得数据画出了该样本的频率分布直方图如下.(每个分组包括左端点,不包括右端点,如第一组表示月收入在内)

(1)求某居民月收入在内的频率;
(2)根据该频率分布直方图估计居民的月收入的中位数;
(3)为了分析居民的月收入与年龄、职业等方面的关系,需再从这10000人中利用分层抽样的方法抽取100人作进一步分析,则应从月收入在内的居民中抽取多少人?

(1) 0.25 (2) 2500(3)15

解析试题分析:(1) 由频率分布直方图可知,居民月收入在内的频率为(0.0002+0.0003)×500=0.25.              ……………………2分
(2) 由频率分布直方图可知
0.0001×500=0.05,
0.0004×500=0.20,
0.0005×500=0.25,
从而有0.0001×500+0.0004×500+0.0005×500="0.5,"  ……………………6分
所以可以估计居民的月收入的中位数为2500(元).   ………………7分
(3) 由频率分布直方图可知,居民月收入在内的频率为
0.0003×500=0.15,                             ……………………9分
所以这10000人中月收入在内的人数为0.15×10000=1500(人),
……………………11分
再从这10000人中利用分层抽样的方法抽取100人,则应从月收入在内的居民中抽取(人).             ……………………12分
考点:由频率分布直方图求各组频率中位数
点评:频率分布直方图中每一个小矩形的面积等于该组的频率,所有小矩形面积之和为1,中位数即面积为0.5处对应的横坐标

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某校的研究性学习小组为了研究高中学生的身体发育状况,在该校随机抽出120名17至18周岁的男生,其中偏重的有60人,不偏重的也有60人。在偏重的60人中偏高的有40人,不偏高的有20人;在不偏重的60人中偏高和不偏高人数各占一半
(1)根据以上数据建立一个 列联表:

 
偏重
不偏重
合计
偏高
 
 
 
不偏高
 
 
 
合计
 
 
 
(2)请问该校17至18周岁的男生身高与体重是否有关?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动。
(1)根据以上数据建立一个2×2的列联表;
(2)判断性别与休闲方式是否有关系。
附:


0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某大学体育学院在2012年新招的大一学生中,随机抽取了      40名男生,他们的身高(单位:cm)情况共分成五组:第1组[175,180),第 2 组[180,185),第 3 组 [185,190),第 4 组[190,195),第 5 组[195,200) .得到的频率分布直方图(局部)如图所示,同时规定身高在185cm以上(含185cm)的学生成为组建该校篮球队的“预备生”.

(I)求第四组的频率并补布直方图;
(II)如果用分层抽样的方法从“预备生”和“非预备生”中选出5人,再从这5人中随机选2人,那么至少有1人是“预备生”的概率是多少?
(III)若该校决定在第4,5组中随机抽取2名学生接受技能测试,第5组中有ζ名学生接受测试,试求ζ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共12分)
现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.

月收入(单位百元)
[15,25
[25,35
[35,45
[45,55
[55,65
[65,75
频数
5
10
15
10
5
5
赞成人数
4
8
12
5
2
1
 
(1)由以上统计数据填下面2乘2列联表并问是否有99%的把握认为“月收入以5500为分界点对“楼市限购令” 的态度有差异;
 
月收入不低于55百元的人数
月收入低于55百元的人数
合计
赞成


 
不赞成


 
合计
 
 
 
 
(2)若对在[15,25) ,[25,35)的被调查中各随机选取两人进行追踪调查,记选中的4人中不赞成“楼市限购令”人数为 ,求随机变量的分布列。
附:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国标准采用世卫组织设定的最宽限值,日均值在35微克/立方米以下空气质量为一级;在35微克/立方米75微克/立方米之间空气质量为二级;在75微克/立方米及其以上空气质量为超标.
某试点城市环保局从该市市区2011年全年每天的监测数据中随机抽取6天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶),若从这6天的数据中随机抽出2天.

(Ⅰ)求恰有一天空气质量超标的概率;
(Ⅱ)求至多有一天空气质量超标的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
某市的教育研究机构对全市高三学生进行综合素质 测试,随机抽取了部分学生的成绩,得到如图所示的成绩 频率分布直方图.

(I )估计全市学生综合素质成绩的平均值;
(II)若评定成绩不低于8o分为优秀.视频率为概率,从 全市学生中任选3名学生(看作有放回的抽样),变量表示 3名学生中成绩优秀的人数,求变量的分布列及期望 )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:.

(1)求图中x的值;
(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为,求的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)下表提供了工厂技术改造后某种型号设备的使用年限和所支出的维修费用(万元)的几组对照数据:

(年)
   
    
   
   
(万元)
   
   
   
   
 
(1)若知道呈线性相关关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程
(2)已知工厂技改前该型号设备使用10年的维修费用为9万元.试根据(1)求出的线性回归方程,预测该型号设备技改后使用10年的维修费用比技改前降低多少?

查看答案和解析>>

同步练习册答案