精英家教网 > 高中数学 > 题目详情
某隧道长2150米,通过隧道的车速不能超过20米/秒.一个由55辆车身都为10米的同一车型组成的运输车队匀速通过该隧道.设车队的速度为x米/秒,根据安全和车流的需要,相邻两车均保持(
a
6
x2+
1
3
x)
米的距离,其中a为常数且
1
2
≤a≤1
,自第一辆车车头进入隧道至第55辆车车尾离开隧道所用时间为y(秒).
(1)将y表示为x的函数;
(2)求车队通过隧道所用时间取最小值时车队的速度.
(1)依题意,自第一辆车车头进入隧道至第55辆车车尾离开隧道所用时间y等于隧道长加车长加车的间隙长,除以火车的速度x米/秒,
即  y=
2150+10×55+(
a
6
x2+
1
3
x)×(55-1)
x

=
2700
x
+9ax+18
    (0<x≤20,
1
2
≤a≤1)
(2)令
2700
x
=9ax
,得x=
300
a
,又由
300
a
=20,得a=
3
4

∴①当
3
4
≤a≤1时,
300
a
≤20
由均值定理知当且仅当x=
300
a
时,y=
2700
x
+9ax+18
≥2
2700
x
×9ax
+18=180
3a
+18
即当x=
300
a
时,ymin=180
3a
+18
②当
1
2
≤a<
3
4
时,
300
a
>20
∵y′=-
2700
x2
+9a<0,(0<x≤20)
∴函数y=
2700
x
+9ax+18
在(0,20]上是减函数,
∴当x=20时,ymin=
2700
20
+180a+18=153+180a
答:若
1
2
≤a<
3
4
,则当车队速度为20m/s时,通过隧道所用时间最少;若
3
4
≤a≤1,则当车队速度为
300
a
m/s时,通过隧道所用时间最少
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•衡阳模拟)某隧道长2150米,通过隧道的车速不能超过20米/秒.一个由55辆车身都为10米的同一车型组成的运输车队匀速通过该隧道.设车队的速度为x米/秒,根据安全和车流的需要,相邻两车均保持(
a
6
x2+
1
3
x)
米的距离,其中a为常数且
1
2
≤a≤1
,自第一辆车车头进入隧道至第55辆车车尾离开隧道所用时间为y(秒).
(1)将y表示为x的函数;
(2)求车队通过隧道所用时间取最小值时车队的速度.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)某隧道长2150米,通过隧道的车速不能超过20米/秒.一个由55辆车身都为10米的同一车型组成的运输车队匀速通过该隧道.设车队的速度为x米/秒,根据安全和车流的需要,相邻两车均保持米的距离,其中a为常数且,自第一辆车车头进入隧道至第55辆车车尾离开隧道所用时间为y(秒) .(1)将y表示为x的函数;(2)求车队通过隧道所用时间取最小值时车队的速度.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分13分)某隧道长2150米,通过隧道的车速不能超过20米/秒.一个由55辆车身都为10米的同一车型组成的运输车队匀速通过该隧道.设车队的速度为x米/秒,根据安全和车流的需要,相邻两车均保持米的距离,其中a为常数且,自第一辆车车头进入隧道至第55辆车车尾离开隧道所用时间为y(秒) .   (1)将y表示为x的函数;(2)求车队通过隧道所用时间取最小值时车队的速度.

查看答案和解析>>

科目:高中数学 来源:2010年河南省驻马店高中高考数学一模试卷(文科)(解析版) 题型:解答题

某隧道长2150米,通过隧道的车速不能超过20米/秒.一个由55辆车身都为10米的同一车型组成的运输车队匀速通过该隧道.设车队的速度为x米/秒,根据安全和车流的需要,相邻两车均保持米的距离,其中a为常数且,自第一辆车车头进入隧道至第55辆车车尾离开隧道所用时间为y(秒).
(1)将y表示为x的函数;
(2)求车队通过隧道所用时间取最小值时车队的速度.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖南省衡阳市两校高三联考数学试卷(理科)(解析版) 题型:解答题

某隧道长2150米,通过隧道的车速不能超过20米/秒.一个由55辆车身都为10米的同一车型组成的运输车队匀速通过该隧道.设车队的速度为x米/秒,根据安全和车流的需要,相邻两车均保持米的距离,其中a为常数且,自第一辆车车头进入隧道至第55辆车车尾离开隧道所用时间为y(秒).
(1)将y表示为x的函数;
(2)求车队通过隧道所用时间取最小值时车队的速度.

查看答案和解析>>

同步练习册答案