精英家教网 > 高中数学 > 题目详情

如图,长方体中,,点E是AB的中点.

(1)证明:平面;
(2)证明:;
(3)求二面角的正切值.

(1)详见解析;(2)详见解析;(3)

解析试题分析:(1)证明直线和平面平行,一般方法有两种:①利用直线和平面平行的判定定理(在平面内找一条直线与之平行),②利用面面平行的性质(如果两个平面平行,则一个平面内的直线和另一个平面平行),连接,交与点,连接,可证,从而平面,(2)证明直线和直线垂直,可先证明直线和平面垂直,由,从而,所以,(3) 求二面角的平面角,可以利用几何法,先找到二面角的平面角,然后借助平面图形去计算,∵
,所以,进而可证,就是的平面角,二面角也可以利用空间向量法,建立适当的空间直角坐标系,把相关点的坐标表示出来,计算两个半平面的法向量,进而求法向量的夹角,然后得二面角的余弦值.
试题解析:(1)证明:连结AD1交A1D于O,连结EO,则O为AD1的中点,又因为E是AB的中点,
所以OE∥BD1. 又∵平面A1DE  BD1平面A1DE ∴BD1∥平面A1DE           4分
(2)证明:由题可知:四边形ADD1A1是正方形∴A1D⊥AD1 又∵AB⊥平面ADD1A1,A1D平面ADD1A1
∴AB⊥AD1 又∵AB平面AD1E,AD1平面A D1E  ABAD1=A,∴A1D⊥平面AD1E 又∵D1E平面AD1E ∴A1D⊥D1E          8分
(3)解:在△CED中,CD=2,,CD2=CE2+DE2  ∴CE⊥DE,又∵D1D⊥平面ABCD  CE平面ABCD ∴CE⊥D1D,又∵平面D1DE  DE平面D1DE  D1DDE=D[,∴CE⊥平面D1DE 又∵D1E⊥平面D1DE,∴CE⊥D1E.,∴∠D1ED是二面角D1―ED―D的一个平面角,在△D1ED中,∠D1DE=90°,D1D="1," DE= ,∴ ∴二面角D1―ED―D的正切值是     12分
考点:1、直线和平面平行的判定;2、直线和平面垂直的判定;3、二面角的求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知多面体中,平面平面的中点.

(1)求证:
(2)求直线与平面所成角的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图在四棱锥中,底面是边长为的正方形,侧面底面,且,设分别为的中点.

(1)求证://平面
(2)求证:面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中, D是 AC的中点。

求证://平面 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,底面, 的中点,.

(1)求证:平面
(2)求点到平面的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

证明梯形是一个平面图形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,底面为直角梯形的四棱锥中,AD∥BC,平面,BC=6.

(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在等腰梯形中,是梯形的高,,现将梯形沿折起,使,且,得一简单组合体如图所示,已知分别为的中点.

(1)求证:平面
(2)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,边长为2的正方形中,点的中点,点的中点,将△、△ 分别沿折起,使两点重合于点,连接.

(1)求证:;     (2)求点到平面的距离.

查看答案和解析>>

同步练习册答案