分析 (1)由$\overrightarrow a$⊥$\overrightarrow b$,可得$\overrightarrow a$•$\overrightarrow b$=0,解得λ即可.
(2)利用向量共线定理即可得出;
(3)由$\overrightarrow a$与$\overrightarrow b$所成夹角为锐角,可得$\overrightarrow{a}•\overrightarrow{b}$>0,且$\overrightarrow{a}$与$\overrightarrow{b}$不能同方向共线.
解答 解:(1)∵$\overrightarrow a$⊥$\overrightarrow b$,∴$\overrightarrow a$•$\overrightarrow b$=-λ+2=0,解得λ=2.
(2)∵$\overrightarrow a$∥$\overrightarrow b$,∴2λ+1=0,解得λ=-$\frac{1}{2}$.
因此$\overrightarrow a$=2$\overrightarrow b$,此时是同向.
(3)∵$\overrightarrow a$与$\overrightarrow b$所成夹角为锐角,
∴$\overrightarrow{a}•\overrightarrow{b}$>0,且$\overrightarrow{a}$与$\overrightarrow{b}$不能同方向共线.
∴-λ+2>0,$λ≠-\frac{1}{2}$,
解得λ<2,且$λ≠-\frac{1}{2}$,
因此λ的范围是λ<2,且$λ≠-\frac{1}{2}$.
点评 本题考查了向量垂直与数量积的关系、向量共线定理、向量夹角公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1” | |
B. | 命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R 均有x2+x+1<0” | |
C. | 在△ABC中,“A>B”是“sinA>sinB”的充要条件 | |
D. | “x≠2或y≠1”是“x+y≠3”既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com