精英家教网 > 高中数学 > 题目详情

【题目】数列 ,﹣ ,﹣ ,…的一个通项公式为(
A.an=(﹣1)n
B.an=(﹣1)n
C.an=(﹣1)n+1
D.an=(﹣1)n+1

【答案】D
【解析】解:由已知中数列 ,﹣ ,﹣ ,…
可得数列各项的分母为一等比数列{2n},分子2n+1,
又∵数列所有的奇数项为正,偶数项为负
故可用(﹣1)n+1来控制各项的符号,
故数列的一个通项公式为an=(﹣1)n+1
所以答案是:D.
【考点精析】利用数列的定义和表示对题目进行判断即可得到答案,需要熟知数列中的每个数都叫这个数列的项.记作an,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n的项叫第n项(也叫通项)记作an

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)已知函数,其中,且

(Ⅰ)讨论函数的单调性;

(Ⅱ)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表:

喜欢

不喜欢

合计

大于40岁

20

5

25

20岁至40岁

10

20

30

合计

30

25

55

(1)判断是否有99.5%的把握认为喜欢“人文景观”景点与年龄有关?

(2)用分层抽样的方法从喜欢“人文景观”景点的市民中随机抽取6人作进一步调查,将这6位市民作为一个样本,从中任选2人,求恰有1位“大于40岁”的市民和1位“20岁至40岁”的市民的概率.

下面的临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数
(1)求函数f(x)的单调减区间;
(2)若 ,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.

(1)令,求的单调区间;

(2)已知处取得极大值.求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)若过点恰有两条直线与曲线相切,求的值;

)用表示中的最小值,设函数,若恰有三个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆轴的正半轴交于点,以为圆心的圆

与圆交于两点.

(1)若直线与圆切于第一象限,且与坐标轴交于,当线段长最小时,求直线的方程;

(2)设是圆上异于的任意一点,直线分别与轴交于点,问是否为定值?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),).

(1)讨论的单调性;

(2)设 ,若)是的两个零点,且

试问曲线在点处的切线能否与轴平行?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左顶点为,右焦点为,过点且斜率为1的直线交椭圆于另一点,交轴于点

(1)求椭圆的方程;

(2)过点作直线与椭圆交于两点,连接为坐标原点)并延长交椭圆于点,求面积的最大值及取最大值时直线的方程.

查看答案和解析>>

同步练习册答案