精英家教网 > 高中数学 > 题目详情

下列关于数列的命题
①若数列{an}是等差数列,且p+q=r(p,q,r为正整数)则ap+aq=ar
②若数列{an}满足an+1=2an,则{an}是公比为2的等比数列
③2和8的等比中项为±4
④已知等差数列{an}的通项公式为an=f(n),则f(n)是关于n的一次函数
其中真命题的个数 为


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
A
分析:①若数列{an}是等差数列,且p+q=r(p,q,r为正整数)则ap+aq=ar,等差数列的性质判断;
②若数列{an}满足an+1=2an,则{an}是公比为2的等比数列,用用数列的类型来研究;
③2和8的等比中项为±4,用等比数列的性质判断;
④已知等差数列{an}的通项公式为an=f(n),则f(n)是关于n的一次函数,用数列的类型来判断.
解答:①若数列{an}是等差数列,且p+q=r(p,q,r为正整数)则ap+aq=ar,不是正确命题,应ap+aq=2ar
②若数列{an}满足an+1=2an,则{an}是公比为2的等比数列,不是真命题,如:0,0,0,…
③2和8的等比中项为±4,正确,可由等比数列的性质证明出来.
④已知等差数列{an}的通项公式为an=f(n),则f(n)是关于n的一次函数不是真命题,如如:0,0,0,…
故选A
点评:本题考查命题真假判断与应用,求解此类题的关键是要对命题涉及的知识与定理、定义等有很好的理解与掌握.本题中举反例时易因为0,0,0,…太特殊了而想不到,学习时应该对各类数列进行分类归纳,明确其性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列关于数列的命题中,正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列关于数列的命题
①若数列{an}是等差数列,且p+q=r(p,q,r为正整数)则ap+aq=ar
②若数列{an}满足an+1=2an,则{an}是公比为2的等比数列
③2和8的等比中项为±4
④已知等差数列{an}的通项公式为an=f(n),则f(n)是关于n的一次函数
其中真命题的个数 为(  )

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省等三校高三2月月考数学文卷 题型:选择题

下列关于数列的命题

① 若数列是等差数列,且为正整数)则 

② 若数列是公比为2的等比数列

③ 2和8的等比中项为±4                           

④ 已知等差数列的通项公式为,则是关于的一次函数

其中真命题的个数为                                                (     )

A.1        B.2         C.3       D.4

 

查看答案和解析>>

科目:高中数学 来源:广东模拟 题型:单选题

下列关于数列的命题
①若数列{an}是等差数列,且p+q=r(p,q,r为正整数)则ap+aq=ar
②若数列{an}满足an+1=2an,则{an}是公比为2的等比数列
③2和8的等比中项为±4
④已知等差数列{an}的通项公式为an=f(n),则f(n)是关于n的一次函数
其中真命题的个数 为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省广雅中学、金山中学、佛山一中高三(下)2月联考数学试卷(文科)(解析版) 题型:选择题

下列关于数列的命题
①若数列{an}是等差数列,且p+q=r(p,q,r为正整数)则ap+aq=ar
②若数列{an}满足an+1=2an,则{an}是公比为2的等比数列
③2和8的等比中项为±4
④已知等差数列{an}的通项公式为an=f(n),则f(n)是关于n的一次函数
其中真命题的个数 为( )
A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案