精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线的一个焦点是,且

1)求双曲线的方程

2)设经过焦点的直线的一个法向量为,当直线与双曲线的右支相交于不同的两点时,求实数的取值范围

3)设(2)中直线与双曲线的右支相交于两点,问是否存在实数,使得为锐角?若存在,请求出的范围;若不存在,请说明理由

【答案】1;(2;(3)不存在,证明见解析

【解析】

1)直接根据题意计算得到得到答案.

2)计算渐近线方程为,根据直线方程与渐近线的关系得到答案.

3)假设存在,为锐角,即,利用韦达定理得到

,解得,不成立.

1)双曲线的一个焦点是,且

解得 故双曲线方程为

2渐近线方程为:

经过焦点的直线的一个法向量为,则直线方程为:

直线与双曲线的右支相交于不同的两点

则满足,解得:

3)假设存在,则为锐角,即 ,设

得到

代入化简得到:

这与矛盾,假设不成立.

故不存在这样的

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,平面是棱上的一点.

(1)证明:平面

(2)若平面,求的值;

(3)在(2)的条件下,三棱锥的体积是18,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆C=1ab0)的左右焦点分别为F1F2,焦距为2,一条准线方程为x=2P为椭圆C上一点,直线PF1交椭圆C于另一点Q

1)求椭圆C的方程;

2)若点P的坐标为(0b),求过点PQF2三点的圆的方程;

3)若=,且λ[],求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南某地区10年间梅雨季节的降雨量单位:的频率分布直方图,试用样本频率估计总体概率,解答下列问题:

假设每年的梅雨季节天气相互独立,求该地区未来三年里至少有两年梅雨季节的降雨量超过350mm的概率.

老李在该地区承包了20亩土地种植杨梅,他过去种植的甲品种杨梅,平均每年的总利润为28万元而乙品种杨梅的亩产量与降雨量之间的关系如下面统计表所示,又知乙品种杨梅的单位利润为,请你帮助老李分析,他来年应该种植哪个品种的杨梅可以使总利润万元的期望更大?并说明理由.

降雨量

亩产量

500

700

600

400

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,点是直线l上的动点,若在圆C上总存在不同的两点AB使得,则的取值范围是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列 中,已知 为常数.

(1)证明: 成等差数列;

(2) ,求数列的前n项和

(3)时,数列 中是否存在不同的三项成等比数列,

也成等比数列?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知半圆分别为半圆轴的左、右交点,直线过点且与轴垂直,点在直线上,纵坐标为,若在半圆上存在点使,则的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】满足约束条件的最小值为7,则_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,底面是边长为4的正三角形,底面,点分别为的中点.

(1)求证:平面平面

(2)在线段上是否存在点,使得直线与平面所成的角的正弦值为?若存在,确定点的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案