精英家教网 > 高中数学 > 题目详情

【题目】已知直线l经过点.

1)若直线在两坐标轴上的截距相等,求直线的方程;

2)若两点到直线的距离相等,求直线的方程.

【答案】(1)(2)

【解析】

1)讨论直线是否过原点,利用截距相等进行求解即可.

2)根据点到直线的距离相等,分直线平行和直线过AB的中点两种情况进行求解即可.

1)若直线过原点,则设为ykx,则k2,此时直线方程为y2x

当直线不过原点,设方程为1,即x+ya

此时a1+23,则方程为x+y3

综上直线方程为y2xx+y3

2)若AB两点在直线l同侧,

ABl

AB的斜率k1

l的斜率为1

l的方程为y2x1,即yx+1

AB两点在直线的两侧,即lAB的中点C20),

k2

l的方程为y0=﹣2x2),即y=﹣2x+4

综上l的方程为y=﹣2x+4yx+1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(选修4﹣4:坐标系与参数方程)
在直角坐标系xOy中,椭圆C的参数方程为 为参数,a>b>0).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l与圆O的极坐标方程分别为 为非零常数)与ρ=b.若直线l经过椭圆C的焦点,且与圆O相切,则椭圆C的离心率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电影院共有个座位.某天,这家电影院上、下午各演一场电影.看电影的是甲、乙、丙三所中学的学生,三所学校的观影人数分别是985人, 1010人,2019人(同一所学校的学生有的看上午场,也有的看下午场,但每人只能看一-场).已知无论如何排座位,这天观影时总存在这样的一个座位,上、 下午在这个座位上坐的是同一所学校的学生,那么的可能取值有( )

A. 12个 B. 11个 C. 10个 D. 前三个答案都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列五个正方体图形中,是正方体的一条对角线,点MNP分别为其所在棱的中点,求能得出MNP的图形的序号(写出所有符合要求的图形序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点和向量

(1)若向量与向量同向,且,求点的坐标;

(2)若向量与向量的夹角是钝角,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当x∈R,|x|<1时,有如下表达式:1+x+x2+…+xn+…=
两边同时积分得: dx+ xdx+ x2dx+…+ xndx+…= dx
从而得到如下等式:1× + ×( 2+ ×( 3+…+ ×( n+1+…=ln2
请根据以上材料所蕴含的数学思想方法,计算:
× + ×( 2+ ×( 3+…+ ×( n+1=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次测试中,卷面满分为100分,考生得分为整数,规定60分及以上为及格.某调研课题小组为了调查午休对考生复习效果的影响,对午休和不午休的考生进行了测试成绩的统计,数据如下表:

(1)根据上述表格完成下列列联表:

(2)判断“能否在犯错误的概率不超过0.010的前提下认为成绩及格与午休有关”?

(参考公式:,其中.)

0.010

0.05

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司针对企业职工推出一款意外险产品,每年每人只要交少量保费,发生意外后可一次性获赔50万元.保险公司把职工从事的所有岗位共分为三类工种,根据历史数据统计出三类工种的每赔付频率如下表(并以此估计赔付概率).

(Ⅰ)根据规定,该产品各工种保单的期望利润都不得超过保费的20%,试分别确定各类工种每张保单保费的上限;

(Ⅱ)某企业共有职工20000人,从事三类工种的人数分布比例如图,老板准备为全体职工每人购买一份此种保险,并以(Ⅰ)中计算的各类保险上限购买,试估计保险公司在这宗交易中的期望利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高三年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在内,发布成绩使用等级制,各等级划分标准见下表.

百分制

85分及以上

70分到84分

60分到69分

60分以下

等级

A

B

C

D

规定:ABC三级为合格等级,D为不合格等级为了解该校高三年级学生身体素质情况,从中抽取了n名学生的原始成绩作为样本进行统计.

按照的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示

n和频率分布直方图中的xy的值,并估计该校高一年级学生成绩是合格等级的概率;

根据频率分布直方图,求成绩的中位数精确到

在选取的样本中,从AD两个等级的学生中随机抽取2名学生进行调研,求至少有一名学生是A等级的概率.

查看答案和解析>>

同步练习册答案