精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线的参数方程为(为参数),直线与曲线交于两点.

(1)的长;

(2)在以为极点,轴的正半轴为极轴建立的极坐标系中,设点的极坐标为,求点到线段中点的距离.

【答案】1 ;2.

【解析】

1)将直线的参数方程化为直角坐标方程,由点到直线距离公式可求得圆心到直线距离,结合垂径定理即可求得的长;

2)将的极坐标化为直角坐标,将直线方程与圆的方程联立,求得直线与圆的两个交点坐标,由中点坐标公式求得的坐标,再根据两点间距离公式即可求得.

1)直线的参数方程为(为参数)

化为直角坐标方程为,即

直线与曲线交于两点.

则圆心坐标为,半径为1

则由点到直线距离公式可知

所以.

2)点的极坐标为,化为直角坐标可得

直线的方程与曲线的方程联立,化简可得

解得,所以两点坐标为

所以

由两点间距离公式可得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系.xOy中,曲线C1的参数方程为 为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.

1)求曲线C1的普通方程和C2的直角坐标方程;

2)已知曲线C2的极坐标方程为,点A是曲线C3C1的交点,点B是曲线C3C2的交点,且AB均异于原点O,且|AB|=4,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是自然对数的底数).

1)求函数的单调区间;

2)曲线处的切线平行,线段的中点为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是由两个全等的菱形组成的空间图形,,∠BAF=∠ECD60°.

1)求证:

2)如果二面角BEFD的平面角为60°,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数向左平移个单位,得到的图象,则满足(

A.图象关于点对称,在区间上为增函数

B.函数最大值为2,图象关于点对称

C.图象关于直线对称,在上的最小值为1

D.最小正周期为有两个根

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线和点,过点作直线分别交两点,为线段的中点,为抛物线上的一个动点.

1)当时,过点作直线于另一点为线段的中点,设的纵坐标分别为.的最小值;

2)证明:存在的值,使得恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线在点处的切线方程为,求

2)当时,,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数,且恒成立.

1)求实数的集合

2)当时,判断图象与图象的交点个数,并证明.

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】眼保健操是一种眼睛的保健体操,主要是通过按摩眼部穴位,调整眼及头部的血液循环,调节肌肉,改善眼的疲劳,达到预防近视等眼部疾病的目的.某学校为了调查推广眼保健操对改善学生视力的效果,在应届高三的全体800名学生中随机抽取了100名学生进行视力检查,并得到如图的频率分布直方图.

1)若直方图中后三组的频数成等差数列,试估计全年级视力在5.0以上的人数;

2)为了研究学生的视力与眼保健操是否有关系,对年级不做眼保健操和坚持做眼保健操的学生进行了调查,得到下表中数据,根据表中的数据,能否在犯错的概率不超过0.005的前提下认为视力与眼保健操有关系?

是否做操

是否近视

不做操

做操

近视

44

32

不近视

6

18

附:

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

同步练习册答案