精英家教网 > 高中数学 > 题目详情
P为双曲线
x2
9
-
y2
16
=1
右支上一点,F1,F2分别是双曲线的左焦点和右焦点,过P点作PH⊥F1F2,若PF1⊥PF2,则PH=(  )
分析:利用双曲线的定义可得|PF1|-|PF2|=2a=6.由PF1⊥PF2,利用勾股定理可得|PF1|2+|PF2|2=102.即可求出
1
2
|PF1| |PF2|
.再利用三角形的面积S△PF1F2=
1
2
|PF1| |PF2|=
1
2
|F1F2| |PH|
,即可得出.
解答:解:由双曲线
x2
9
-
y2
16
=1
得a2=9,b2=16,∴a=3,c=
a2+b2
=5,∴|F1F2|=2c=10.
∴|PF1|-|PF2|=2a=6.
∵PF1⊥PF2,∴|PF1|2+|PF2|2=102.好
∴2|PF1||PF2|=|PF1|2+|PF2|2-(|PF1|-|PF2|)2=100-36=64.
解得
1
2
|PF1| |PF2|
=32.
S△PF1F2=
1
2
|PF1| |PF2|=
1
2
|F1F2| |PH|

∴|PH|=
32
10
=
16
5

故选D.
点评:熟练掌握双曲线的定义、标准方程及其性质、勾股定理、三角形的面积公式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果双曲线经过点P(6,
3
)
,渐近线方程为y=±
x
3
,则此双曲线方程为(  )
A、
x2
18
-
y2
3
=1
B、
x2
9
-
y2
1
=1
C、
x2
81
-
y2
9
=1
D、
x2
36
-
y2
9
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四个命题中:
①“若x2+y2≠0,则x,y全不为零”的否命题;
②若A、B、C三点不共线,对平面ABC外的任一点O,有
OM
=
1
3
AO
+
1
3
OB
+
1
3
OC
,则点M与点A、B、C共面;
③若双曲线
x2
9
-
y2
16
=1的两焦点为F1、F2,点P为双曲线上一点,且
PF1
PF2
=0,则△PF1F2的面积为16;
④曲线
x2
25
+
y2
9
=1与曲线
x2
9-k
+
y2
25-k
=1(0<k<9)有相同的焦点;
其中真命题的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次曲线Ck的方程:
x2
9-k
+
y2
4-k
=1

(1)分别求出方程表示椭圆和双曲线的条件;
(2)若双曲线Ck与直线y=x+1有公共点且实轴最长,求双曲线方程;
(3)m、n为正整数,且m<n,是否存在两条曲线Cm、Cn,其交点P与点F1(-
5
,0),F2(
5
,0)
满足PF1⊥PF2,若存在,求m、n的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•门头沟区一模)已知P(x,y)是中心在原点,焦距为10的双曲线上一点,且
y
x
的取值范围为(-
3
4
3
4
),则该双曲线方程是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以下四个命题中:
①“若x2+y2≠0,则x,y全不为零”的否命题;
②若A、B、C三点不共线,对平面ABC外的任一点O,有
OM
=
1
3
AO
+
1
3
OB
+
1
3
OC
,则点M与点A、B、C共面;
③若双曲线
x2
9
-
y2
16
=1的两焦点为F1、F2,点P为双曲线上一点,且
PF1
PF2
=0,则△PF1F2的面积为16;
④曲线
x2
25
+
y2
9
=1与曲线
x2
9-k
+
y2
25-k
=1(0<k<9)有相同的焦点;
其中真命题的序号为______.

查看答案和解析>>

同步练习册答案