精英家教网 > 高中数学 > 题目详情

【题目】分别是正方体的棱上两点,且,给出下列四个命题正确的是( )

A.异面直线所成的角为

B.平面

C.三棱锥的体积为定值;

D.直线与平面所成的角为.

【答案】AC

【解析】

对于选项是异面直线所成的角,所以正确;对于选项不垂直,由此知与平面不垂直,所以错误;对于选项三棱锥的体积为为定值,所以正确;对于选项直线与平面所成的角为所成角为所以错误.即得解.

如图所示,

对于选项,因为是异面直线所成的角,,所以异面直线所成的角为,所以正确;

对于选项,由前面得异面直线所成的角为,所以不垂直,由此知与平面不垂直,所以错误;

对于选项三棱锥的体积为为定值,所以正确;

对于选项,在三棱锥中,设到平面的距离为,即有,解得,直线与平面所成的角的正弦为,即直线与平面所成的角为所成角为所以错误.

综上,正确的命题序号是AC

故选:AC

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点为坐标原点,焦点轴的正半轴上,过焦点作斜率为的直线交抛物线两点,且,其中为坐标原点.

(1)求抛物线的方程;

(2)设点,直线分别交准线于点,问:在轴的正半轴上是否存在定点,使,若存在,求出定点的坐标,若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,,点中点,连接交于点,点中点.

1)求证:平面

2)求证:平面平面

3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,为平行四边形ABCD所在平面外一点,M,N分别为AB,PC的中点,平面PAD平面PBC=.

(1)求证:BC∥

(2)MN与平面PAD是否平行?试证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 )展开式的前三项的二项式系数之和为16,所有项的系数之和为1.

(1)求的值;

(2)展开式中是否存在常数项?若有,求出常数项;若没有,请说明理由;

(3)求展开式中二项式系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点,右焦点分别为,右准线为

(1)若直线上不存在点,使为等腰三角形,求椭圆离心率的取值范围;

(2)在(1)的条件下,当取最大值时,点坐标为,设是椭圆上的三点,且,求:以线段的中心为原点,过两点的圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,正项数列的前项的积为,且,当时, 都成立.

1)若 ,求数列的前项和;

2)若 ,求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数.

(1)讨论函数的单调性;

(2)若函数有两个极值点,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左,右焦点分别为 ,离心率为 是椭圆上的动点,当时, 的面积为.

(1)求椭圆的标准方程;

(2)若过点的直线交椭圆 两点,求面积的最大值.

查看答案和解析>>

同步练习册答案