精英家教网 > 高中数学 > 题目详情

【题目】已知圆O1和圆O2的极坐标方程分别为ρ=2,ρ2-2ρcos(θ-)=2.

(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;

(2)设两圆交点分别为A、B,求直线AB的参数方程,并利用直线AB的参数方程求两圆的公共弦长|AB|.

【答案】(1) ;(2).

【解析】试题分析(1)利用把圆,圆的极坐标方程化为直角坐标方程;(2)把2个圆的直角坐标方程相减可得公共弦所在的直线方程,再化为参数方程,利用直线的参数方程求两圆的公共弦长

试题解析:(1)圆O1的极坐标方程为ρ=2,直角坐标方程,O2的极坐标方程为,ρ2-2ρcos(θ-)=2,直角坐标方程

(2)两圆的方程相减,可得直线AB的方程为x+y-1=0,参数方程为t为参数), 代入x2+y2=4,可得t2+t-3=0 ,|AB|==

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】厂为了对新研发的一种产品进行合理定价将该产品按事先拟定的价格进行试销得到如下数据

单价x/

8

8.2

8.4

8.6

8.8

9

销量y/

90

84

83

80

75

68

(1)求线性回归方程=x+其中=-20 =- .

(2)预计在今后的销售中销量与单价仍然服从(1)中的关系且该产品的成本是4/为使工厂获得最大利润该产品的单价应定为多少元?(利润=销售收入-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一个转盘游戏,转盘被平均分成10等份(如图所示),转动转盘,当转盘停止后,指针指向的数字即为转出的数字.游戏规则如下:两个人参加,先确定猜数方案,甲转动转盘,乙猜,若猜出的结果与转盘转出的数字所表示的特征相符,则乙获胜,否则甲获胜.猜数方案从以下三种方案中选一种:

A.是奇数是偶数

B.4的整数倍数不是4的整数倍数

C.是大于4的数不是大于4的数

请回答下列问题:

(1)如果你是乙,为了尽可能获胜,你将选择哪种猜数方案,并且怎样猜?为什么?

(2)为了保证游戏的公平性,你认为应制定哪种猜数方案?为什么?

(3)请你设计一种其他的猜数方案,并保证游戏的公平性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形所在平面与底面垂直,在直角梯形中, .

(1)求证: 平面

(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现从某班的一次期末考试中,随机的抽取了七位同学的数学(满分150分)、物理(满分110分)成绩如下表所示,数学、物理成绩分别用特征量表示,

特征量

1

2

3

4

5

6

7

t

101

124

119

106

122

118

115

y

74

83

87

75

85

87

83

关于t的回归方程;

(2)利用(1)中的回归方程,分析数学成绩的变化对物理成绩的影响,并估计该班某学生数学成绩130分时,他的物理成绩(精确到个位).

附:回归方程 中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(数学文卷·2017届江西省玉山一中高三上学期第二次月考第16题)中国传统文化中很多内容体现了数学的对称美,如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的形式美、和谐美.给出定义:能够将圆O的周长和面积同时平分的函数称为这个圆的“优美函数”.给出下列命题:对于任意一个圆O,其“优美函数”有无数个;②函数可以是某个圆的“优美函数”;③正弦函数可以同时是无数个圆的“优美函数”;④函数是“优美函数”的充要条件为函数的图象是中心对称图形.其中正确的命题是__(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国际奥委会将于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地。目前德国汉堡、美国波士顿等申办城市因市民担心赛事费用超支而相继退出。某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:

(1)根据已有数据,把表格数据填写完整;

(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关?

(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.

附: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线经过点

(1)讨论函数的单调性;

(2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

在平面直角坐标系中,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系.已知曲线的极坐标方程为.倾斜角为,且经过定点的直线与曲线交于两点.

(Ⅰ)写出直线的参数方程的标准形式,并求曲线的直角坐标方程;

(Ⅱ)求的值.

查看答案和解析>>

同步练习册答案