精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,点是曲线上的任意一点,动点满足

1)求点的轨迹方程;

2)经过点的动直线与点的轨迹方程交于两点,在轴上是否存在定点(异于点),使得?若存在,求出的坐标;若不存在,请说明理由.

【答案】(1);(2)存在点符合题意.

【解析】

1)设,利用相关点代入法得到点的轨迹方程;

2)设存在点,使得,则,因为直线l的倾斜角不可能为,故设直线l的方程为,利用斜率和为0,求得,从而得到定点坐标.

1)设

.

,则

因为点N为曲线上的任意一点,

所以

所以,整理得

故点C的轨迹方程为.

2)设存在点,使得,所以.由题易知,直线l的倾斜角不可能为,故设直线l的方程为

代入,得.,则.因为,所以,即,所以.故存在点,使得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点是抛物线的焦点,直线相交于不同的两点

1)求的方程;

2)若直线经过点,求的面积的最小值(为坐标原点)

3)已知点,直线经过点为线段的中点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列满足.

1)求证:数列为等比数列;

2)对于大于的正整数(其中),若三个数经适当排序后能构成等差数列,求符合条件的数组

3)若数列满足,是否存在实数,使得数列是单调递增数列?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在等腰梯形中,两腰,底边的三等分点,的中点.分别沿将四边形折起,使重合于点,得到如图2所示的几何体.在图2中,分别为的中点.

(1)证明:平面

(2)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,沿河有AB两城镇,它们相距千米.以前,两城镇的污水直接排入河里,现为保护环境,污水需经处理才能排放.两城镇可以单独建污水处理厂,或者联合建污水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送).依据经验公式,建厂的费用为(万元),表示污水流量;铺设管道的费用(包括管道费)(万元),表示输送污水管道的长度(千米).已知城镇A和城镇B的污水流量分别为两城镇连接污水处理厂的管道总长为千米.假定:经管道输送的污水流量不发生改变,污水经处理后直接排入河中.请解答下列问题(结果精确到):

1)若在城镇A和城镇B单独建厂,共需多少总费用?

2)考虑联合建厂可能节约总投资,设城镇A到拟建厂的距离为千米,求联合建厂的总费用的函数关系式,并求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是各项均不为0的等差数列,公差为为其前项和,且满足.数列满足为数列的前项和.

1)求

2)求

3)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的各项均为正数,且,对于任意的,均有.

1)求证:是等比数列,并求出的通项公式;

2)若数列中去掉的项后,余下的项组成数列,求

3)设,数列的前项和为,是否存在正整数,使得成等比数列,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线C的参数方程为为参数),以平面直角坐标系的原点O为极点,x轴正半轴为极轴建立极坐标系.

1)求曲线C的极坐标方程;

2)过点,倾斜角为的直线l与曲线C相交于MN两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其导函数设为.

(Ⅰ)求函数的单调区间;

(Ⅱ)若函数有两个极值点,试用表示

(Ⅲ)在(Ⅱ)的条件下,若的极值点恰为的零点,试求这两个函数的所有极值之和的取值范围.

查看答案和解析>>

同步练习册答案