【题目】若函数,
(1)若函数为奇函数,求m的值;
(2)若函数在上是增函数,求实数m的取值范围;
(3)若函数在上的最小值为,求实数m的值.
【答案】(1)
(2)
(3)或
【解析】
(1)由奇函数得到,代入计算得到答案.
(2)讨论,,三种情况,分别计算得到答案.
(3)根据(2)的讨论,分别计算函数的最小值,对比范围得到答案.
(1)是奇函数,定义域为
,令,得,
经检验:时,.
(2)①时,开口向上,对称轴为,
在上单调递增
②时,开口向下,对称轴为,
在上单调递增,在上单调递减,
在上单调递增,,.
③时,
函数在和上单调递增,则上单调递减,
在上不单调,不满足题意.
综上所述:的取值范围是.
(3)由(2)可知
①时,,在上单调递增,
解得或
②时,,
在上单调递增,在上单调递减,
当即时,
解得:(舍)
当即时,
解得:,,
③时,
函数在和上单调递增,则上单调递减,
当时,
解得:(舍)
综上所述:或.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,B1,B2是椭圆的短轴端点,P是椭圆上异于点B1,B2的一动点.当直线PB1的方程为时,线段PB1的长为.
(1)求椭圆的标准方程;
(2)设点Q满足:QB1⊥PB1,QB2⊥PB2,求证:△PB1B2与△QB1B2的面积之比为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三国时期著名的数学家刘徽对推导特殊数列的求和公式很感兴趣,创造并发展了许多算法,展现了聪明才智.他在《九章算术》“盈不足”章的第19题的注文中给出了一个特殊数列的求和公式.这个题的大意是:一匹良马和一匹驽马由长安出发至齐地,长安与齐地相距3000里(1里=500米),良马第一天走193里,以后每天比前一天多走13里.驽马第一天走97里,以后每天比前一天少走半里.良马先到齐地后,马上返回长安迎驽马,问两匹马在第几天相遇( )
A. 14天B. 15天C. 16天D. 17天
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥中,底面是边长为的菱形,侧面底面,60°, , 是中点,点在侧棱上.
(Ⅰ)求证: ;
(Ⅱ)是否存在,使平面 平面?若存在,求出,若不存在,说明理由.
(Ⅲ)是否存在,使平面?若存在,求出.若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新冠肺炎疫情期间,为了减少外出聚集,“线上买菜”受追捧.某电商平台在地区随机抽取了位居民进行调研,获得了他们每个人近七天“线上买菜”消费总金额(单位:元),整理得到如图所示频率分布直方图.
(1)求的值;
(2)从“线上买菜”消费总金额不低于元的被调研居民中,随机抽取位给予奖品,求这位“线上买菜”消费总金额均低于元的概率;
(3)若地区有万居民,该平台为了促进消费,拟对消费总金额不到平均水平一半的居民投放每人元的电子补贴.假设每组中的数据用该组区间的中点值代替,试根据上述频率分布直方图,估计该平台在地区拟投放的电子补贴总金额.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区某农产品近几年的产量统计如表:
(1)根据表中数据,建立关于的线性回归方程;
(2)根据线性回归方程预测2019年该地区该农产品的年产量.
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:,.(参考数据: ,计算结果保留小数点后两位)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】点是函数的图象的一个对称中心,且点到该图象的对称轴的距离的最小值为.
①的最小正周期是;
②的值域为;
③的初相为;
④在上单调递增.
以上说法正确的个数是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知三棱锥O﹣ABC的侧棱OA,OB,OC两两垂直,且OA=1,OB=OC=2,E是OC的中点.
(1)求异面直线BE与AC所成角的余弦值;
(2)求直线BE和平面ABC的所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下命题为假命题的是( )
A. “若m>0,则方程x2+x-m=0有实数根”的逆命题
B. “面积相等的三角形全等”的否命题
C. “若xy=1,则x,y互为倒数”的逆命题
D. “若A∪B=B,则AB”的逆否命题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com