精英家教网 > 高中数学 > 题目详情
19.已知:f(x)是定义的R上的不恒为零的函数,且对任意a、b∈R,满足:f(a•b)=af(b)+bf(a),且f(2)=2,an=$\frac{{f({2^{-n}})}}{n},则f(\frac{1}{2})$=-$\frac{1}{2}$;数列{an}的通项公式an=-$\frac{1}{{2}^{n}}$.

分析 令a=b=1,求得f(1)=0,再令a=2,b=$\frac{1}{2}$,求得f($\frac{1}{2}$)=-$\frac{1}{2}$;令a=2-n,b=2,得f(2-n+1)=2-nf(2)+2f(2-n),设An=f(2-n),可得An-1=2-n-1+2An,从而可知数列{ $\frac{{A}_{n}}{{2}^{-n}}$}是以-1为,-1为首项的等差数列,故可求数列{An}的通项公式,从而得出数列{an}的通项公式.

解答 解:令a=1,b=1,
得f(1)=f(1)+f(1),∴f(1)=0,
令a=2,b=$\frac{1}{2}$,得f(1)=2f($\frac{1}{2}$)+$\frac{1}{2}$f(2),且f(2)=2,
∴f($\frac{1}{2}$)=-$\frac{1}{2}$,
令a=2-n,b=2,得f(2-n+1)=2-nf(2)+2f(2-n
设An=f(2-n
∴An-1=2-(n-1)+2An
∴$\frac{{A}_{n-1}}{{2}^{-(n-1)}}$=1+$\frac{{A}_{n}}{{2}^{-n}}$,
即$\frac{{A}_{n}}{{2}^{-n}}$-$\frac{{A}_{n-1}}{{2}^{-(n-1)}}$=-1,且$\frac{{A}_{1}}{{2}^{-1}}$=$\frac{f(\frac{1}{2})}{\frac{1}{2}}$=-1,
即数列{$\frac{{A}_{n}}{{2}^{-n}}$}是以-1为,-1为首项的等差数列,
∴$\frac{{A}_{n}}{{2}^{-n}}$=-n,
∴An=-n•2-n
∴an=-$\frac{1}{{2}^{n}}$.
故答案为:-$\frac{1}{2}$,-$\frac{1}{{2}^{n}}$.

点评 本题考查数列的函数特性、等差数列的定义,涉及抽象函数的应用,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=3ax2-2(a+c)x+c(a>0,a,c∈R)
(1)设a>c>0,若f(x)>c2-2c+a对x∈[1,+∞]恒成立,求c的取值范围;
(2)函数f(x)在区间(0,1)内是否有零点,有几个零点?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.关于z的方程z+i=2+iz的根是(  )
A.$\frac{3}{2}-\frac{1}{2}$iB.$\frac{3}{2}+\frac{1}{2}$iC.3-iD.3+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知:二次函数f(x)=ax2+bx(a,b为常数且a≠0)满足f(x+5)=f(-x-3)且方程f(x)=x有等根
(1)求f(x)的解析式;
(2)是否存在实数m、n,(m<n),使f(x)的定义域和值域分别为[m,n]和[3m,3n]?如果存在,求出m、n的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow a=(2,1),\overrightarrow b=(x,-2)$,若$\overrightarrow a$∥$\overrightarrow b$,则$\overrightarrow a+\overrightarrow b$=(  )
A.(2,1)B.(-2,-1)C.(3,-1)D.(-3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{1}{2}$x2+2ax,g(x)=3a2lnx+b.
(1)设两曲线y=f(x)与y=g(x)有公共点,且在公共点处的切线相同,若a>0,试建立b关于的函数关系式;
(2)若任意b∈[0,2],h(x)=f(x)+g(x)-(2a+b)x在(0,4)上为单调函数,求a的取值范围.
(3)a=-1,b=0,设正项数列{an}(n∈N*)满足a1=a(a>0),g(an+1)=f(an),证明:存在常数M,使得对于任意的n∈N*,都有an≤M.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=$\frac{x}{{{x^2}+1}}$的值域是[$-\frac{1}{2}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若直角坐标平面内的两个不同点P、Q满足条件:
①P、Q都在函数y=f(x)的图象上;
②P、Q关于原点对称,则称点对[P,Q]是函数y=f(x)的一对“友好点对”(注:点对[P,Q]与[Q,P]看作同一对“友好点对”).已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x>0}\\{-{x}^{2}-4x,x≤0}\end{array}\right.$,则此函数的“友好点对”有(  ) 对.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.关于直线a,b,c以及平面α,β,给出下列命题:
①若a∥α,b∥α,则a∥b
②若a∥α,b⊥α,则a⊥b
③若a?α,b?α,且c⊥a,c⊥b,则c⊥α
④若a⊥α,a∥β,则α⊥β.
其中错误的命题是(  )
A.①②B.②④C.①③D.②③

查看答案和解析>>

同步练习册答案