精英家教网 > 高中数学 > 题目详情

【题目】如图,在长方体ABCDA1B1C1D1中,底面ABCD是边长为2的正方形.

1)证明:A1C1平面ACD1

2)求异面直线CDAD1所成角的大小;

3)已知三棱锥D1ACD的体积为,求AA1的长.

【答案】1)见解析(290°3AA11

【解析】

1)先证明A1C1AC,即得证;

2)由CD平面ADD1A1,可得CDAD1,即得解;

3)由AA1的长可看作三棱锥D1ACD的高,利用体积即得解.

1)证明:在长方体中,因A1ACC1A1ACC1,可得A1C1AC

A1C1不在平面ACD1内,AC平面ACD1

A1C1平面ACD1

2)解:因为CD平面ADD1A1AD1平面ADD1A1,可得CDAD1

所以异面直线CDAD1所成角90°

3)解:由三棱锥D1ACD的体积为

由于平面ACD,且

可得

AA11

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】命题方程表示双曲线命题不等式的解集是. 为假 为真的取值范围.

【答案】

【解析】试题分析:由命题方程表示双曲线,求出的取值范围,由命题不等式的解集是,求出的取值范围,由为假, 为真,得出一真一假,分两种情况即可得出的取值范围.

试题解析:

范围为

型】解答
束】
18

【题目】如图,设是圆上的动点轴上的投影 上一点.

1)当在圆上运动时求点的轨迹的方程

2)求过点且斜率为的直线被所截线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,四边形是边长为2的菱形,的中点,以为折痕将折起到的位置,使得平面平面,如图2.

1)证明:平面平面

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市计划按月订购一种酸奶,每天进货量相同,已知每售出一箱酸奶的利润为50元,当天未售出的酸奶降价处理,以每箱亏损10元的价格全部处理完.若供不应求,可从其它商店调拨,每销售1箱可获利30元.假设该超市每天的进货量为14箱,超市的日利润为y元.为确定以后的订购计划,统计了最近50天销售该酸奶的市场日需求量,其频率分布表如图所示.

(1)求的值;

(2)求y关于日需求量的函数表达式;

(3)以50天记录的酸奶需求量的频率作为酸奶需求量发生的概率,估计日利润在区间[580,760]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是不共面的三个向量,则能构成一个基底的一组向量是(  )

A. 2+2 B. 2+2

C. ,2 D. +

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点,圆轴的正半轴的交点是,过点的直线与圆交于不同的两点.

1)若直线轴交于,且,求直线的方程;

2)设直线的斜率分别是,求的值;

3)设的中点为,点,若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC的对边分别为abc,且ba2+c2b2)=a2ccosC+ac2cosA.

1)求角B的大小;

2)若△ABC外接圆的半径为,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数(其中为自然对数的底数).

,使得直线为函数的一条切线;

②对,函数的导函数无零点;

③对,函数总存在零点;

则上述结论正确的是______.(写出所有正确的结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大气污染是我国目前最突出的环境问题之一,其中工厂废气是大气污染的重大污染源之一。工厂废气未经净化处理排放至空气中,除了对空气质量造成严重破坏,还会对人体的健康造成重大威胁。长期生活在污染的空气中,生活质量及身体健康将急剧下降。某工厂因为污染问题需改进技术,2019年初购进一台环保新机器投入生产,机器的成本价为36万元,第年该机器包括维修费和机器护理费用在内,每年另需投人费用万元,购进该机器后每年盈利20万元.

(1)问该机器投入生产第几年,工厂开始盈利(即总收入大于所有投人的费用)?

2)由于机器使用年限越大维修等费用越高,所以工厂决定当年平均利润最大时将该机器以5万元低价处理,问使用该机器几年后工厂年平均利润最大?此时工厂获得的总利润为多少?

查看答案和解析>>

同步练习册答案