精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若函数有唯一的极小值点,求实数的取值范围;

2)求证:.

【答案】1.2)证明见解析

【解析】

1)对函数进行求导,分类讨论根据函数有唯一极小值点,最后求出实数的取值范围;

2)对所要证明的式子进行变形,构造函数:,求导,最后利用函数的单调性证明出结论.

解:

时,,在时,,即,所以单调递减,

时,,所以单调递增,所以函数有唯一的极小值

点成立;

时,令,得

时,,即,所以单调递减,

时,,所以单调递增,

所以函数有唯一的极小值点成立;

时,令,得,当时不合题意,

,且,即

时,,即,所以单调递减,

时,,所以单调递增,

时,,即,所以单调递减,

所以函数有唯一的极小值点成立;

综上所述,的取值范围为.

2)令

,易知上单增,且

所以当时,,从而,当时,,从而

单减,在单增,则的最小值为,所以当时,

,即

,所以

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线C的参数方程为为参数).以坐标原点O为极,z轴正半轴为极轴建立极坐标系,直线的极坐标方程为.

()求曲线C的普通方程和直线的直角坐标方程;

()设点.若直线与曲线C相交于AB两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点为,,焦距为,直线:与椭圆相交于,两点,为弦的中点.

1)求椭圆的标准方程;

2)若直线:与椭圆相交于不同的两点,,,若为坐标原点),求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与抛物线交于两点,且的面积为16(为坐标原点).

(1)求的方程.

(2)直线经过的焦点不与轴垂直,交于两点,若线段的垂直平分线与轴交于点,试问在轴上是否存在点,使为定值?若存在,求该定值及的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线的参数方程为为参数),圆的极坐标方程为.

(1)求直线的普通方程与圆的直角坐标方程;

(2)设圆与直线交于两点,若点的直角坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市为配合国家“一带一路”战略,发展城市旅游经济,拟在景观河道的两侧,沿河岸直线修建景观(桥),如图所示,河道为东西方向,现要在矩形区域内沿直线将接通.已知,河道两侧的景观道路修复费用为每米万元,架设在河道上方的景观桥部分的修建费用为每米万元.

(1)若景观桥长时,求桥与河道所成角的大小;

(2)如何景观桥的位置,使矩形区域内的总修建费用最低?最低总造价是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为实数).

1)若为偶函数,求实数的值;

2)设,求函数的最小值(用表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥的底面是直角梯形,平面,中点,且.

1)求证:平面

2)若与底面所成角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点为圆心,1为半径的圆相切,又知C的一个焦点与P关于直线对称.

1)求双曲线C的方程;

2)设直线与双曲线C的左支交于AB两点,另一直线经过AB的中点,求直线y轴上的截距b的取值范围;

3)若Q是双曲线C上的任一点,为双曲线C的左、右两个焦点,从的角平分线的垂线,垂足为N,试求点N的轨迹方程.

查看答案和解析>>

同步练习册答案