精英家教网 > 高中数学 > 题目详情
已知两直线l1:mx+y-2=0和l2:(m+2)x+y+4=0与两坐标轴围成的四边形有外接圆,则实数m的值为(  )
分析:因为两直线与两坐标轴围成的四边形有外接圆,由两坐标轴垂直,即夹角为90°,根据圆的内接四边形对角互补得到两直线的夹角为90°,即互相垂直,分别找出两直线的斜率,根据两直线垂直时斜率的乘积为-1列出关于m的方程,求出方程的解即可得到m的值.
解答:解:根据题意可知:两直线l1和l2垂直,
∵两直线l1:mx+y-2=0和l2:(m+2)x+y+4=0的斜率分别为-m和-(m+2),
∴-m•[-(m+2)]=-1,即(m+1)2=0,解得:m=-1.
故选B.
点评:此题考查了直线与圆的位置关系,以及两直线垂直时斜率满足的关系.由题意,根据圆内接四边形的对角互补得到两直线垂直是本题的突破点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两直线l1:mx+8y+n=0和l2:2x+my-1=0,试确定m,n的值,使
(1)l1与l2相交于点P(m,-1);
(2)l1∥l2
(3)l1⊥l2,且l1在y轴上的截距为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两直线l1:mx+8y+n=0和l2:2x+my-1=0,
(1)若l1与l2交于点p(m,-1),求m,n的值;
(2)若l1∥l2,试确定m,n需要满足的条件;
(3)若l1⊥l2,试确定m,n需要满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两直线l1:mx+8y+n=0和l2:2x+my-1=0.试确定m,n的值,使
(1)l1∥l2
(2)l1⊥l2,且l1在y轴上的截距为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两直线l1:mx+8y+n=0和l2:2x+my-1=0,
(1)若l1与l2交于点P(m,-1),求m,n的值;
(2)若l1∥l2,试确定m,n需要满足的条件.

查看答案和解析>>

同步练习册答案