精英家教网 > 高中数学 > 题目详情
已知函数y=
2
sin(2x+
π
4
)(x∈R),则该函数的最小正周期为
 
,最小值为
 
,单调递减区间为
 
考点:正弦函数的图象
专题:三角函数的图像与性质
分析:根据正弦函数的图象和性质即可得到结论.
解答: 解:函数的周期T=
ω
=
2

当sin(2x+
π
4
)=-1时,函数取得最小值为-
2

由2kπ+
π
2
≤2x+
π
4
≤2kπ+
2
,k∈Z,
得kx+
π
8
≤x≤kx+
8
,k∈Z,
故函数的递减区间为[kx+
π
8
,kx+
8
],k∈Z,
故答案为:π-
2
  kx+
π
8
,kx+
8
],k∈Z
点评:本题主要考查三角函数的周期,最值以及单调区间的求解,利用三角函数的图象和性质是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

化简:
sin2αtanα+cos2α
tanα+2sinαcosα
•sinαcosα.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M:(x-1)2+(y-1)2=4,直线l过点P(2,3)且与圆M交于A,B两点,且|AB|=2
3
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:y=2x+1,若直线l2与l1关于直线x=1对称,则l2的斜率为(  )
A、-2
B、-
1
2
C、
1
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a2=2a1,且a2+1是a1与a3的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=an-2log2an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

sin(α+β)
sin(α-β)
=
p
q
,则
tanα
tanβ
等于(  )
A、
p-q
p+q
B、
p+q
p-q
C、
q-p
q+p
D、
q+p
q-p

查看答案和解析>>

科目:高中数学 来源: 题型:

4名大学生到三家企业应聘,每名大学生至多被一家企业录用,则每家企业至少录用一名大学生的情况有(  )
A、24种B、36种
C、48种D、60种

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}各项均为正数,且满足log3an+1=log3an+1(n∈N*),且a2+a4+a6=3,则log3(a5+a7+a9)的值是(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:tan(
π
6
-θ)+tan(
π
6
+θ)+
3
tan(
π
6
-θ)tan(
π
6
+θ)

查看答案和解析>>

同步练习册答案