精英家教网 > 高中数学 > 题目详情
11.如图,在复平面内,复数z1,z2对应的向量分别是$\overrightarrow{OA}$,$\overrightarrow{OB}$,设复数$z=\frac{z_1}{z_2}$,则z的共轭复数为(  )
A.$\frac{1}{2}-\frac{3}{2}i$B.$\frac{1}{2}+\frac{3}{2}i$C.1-3iD.1+3i

分析 由题意结合图形求出z1=2-i,z2=1+i,代入$z=\frac{z_1}{z_2}$,由复数代数形式的乘除运算化简,再由共轭复数的概念得答案.

解答 解:由图可知,z1=2-i,z2=1+i,
∴$z=\frac{{z}_{1}}{{z}_{2}}=\frac{2-i}{1+i}=\frac{(2-i)(1-i)}{(1+i)(1-i)}$=$\frac{1-3i}{2}=\frac{1}{2}-\frac{3}{2}i$,
∴$\overline{z}=\frac{1}{2}+\frac{3}{2}i$.
故选:B.

点评 本题考查复数的代数表示法及其几何意义,考查了复数代数形式的乘除运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在△ABC中,tan($\frac{π}{4}$+A)=2,求:
(1)$\frac{sin2A}{sin2A+co{s}^{2}A}$;
(2)若B=$\frac{π}{4}$,c=3,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.过点(-1,3)且横截距与纵截距相等的直线方程是3x+y=0,x+y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知xy=$\frac{1}{9}$,0<x<y<1,u=log${\;}_{\frac{1}{3}}$xlog${\;}_{\frac{1}{3}}$y,则(  )
A.u≤1B.u<1C.u>1D.u≥1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=lnx(lnx-1)在点(1,0)处的切线是一次函数g(x)=ax+b.
(1)求a,b的值;
(2)令F(x)=x[f′(x)+g′(x)],求F(x)在(0,+∞)内的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知a,b为实数,焦点在y轴上的椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{a+9}$=1的离心率为$\frac{1}{2}$,b2-2bi=14+5b+b2i,如果数列{cn}的首项为$\frac{a}{3}$,公比为-b,且存在两项cm,cn,使得$\sqrt{{c}_{m}{c}_{n}}$=2c1,且$\frac{1}{m}$+$\frac{9}{n}$的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知等差数列{an}的前n项和为Sn,若(a2-1)3+2010(a2-1)=1,(a2009-1)3+2010(a2009-1)=-1
,下列为真命题的序号为(  )
①S2009=2009;②S2010=2010;③a2009<a2;④S2009<S2
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)对任意实数x均有f(x)=-2f(x+1),且在区间[0,1)上,有表达式f(x)=x2
(1)求f(-1),f(1.5);
(2)写出f(x)在区间[-2,2]上的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若x,y满足(x-1)2+(y+2)2=4,则2x+y的最大值和最小值分别为2$\sqrt{5}$和-2$\sqrt{5}$.x2+y2的最大值和最小值分别为9+4$\sqrt{5}$和9-4$\sqrt{5}$.

查看答案和解析>>

同步练习册答案