精英家教网 > 高中数学 > 题目详情
2.已知抛物线y2=2px(p>0)经过点(4,-4).
(1)求p的值;
(2)若直线l与此抛物线交于A、B两点,且线段AB的中点为N(2,$\frac{1}{3}$).求直线l的方程.

分析 (1)将点(4,-4)代入抛物线y2=2px(p>0)可得p值;
(2)根据线段AB的中点为N(2,$\frac{1}{3}$)利用点差法,求出直线斜率,可得直线l的方程.

解答 解:(1)∵抛物线y2=2px(p>0)经过点(4,-4).
∴16=8p,
解得:p=2;
(2)由(1)得:y2=4x,
设A(x1,y1),B(x2,y2),
则$\left\{\begin{array}{l}{y}_{1}^{2}=4{x}_{1}\\{y}_{2}^{2}=4{x}_{2}\end{array}\right.$,两式相减得:(y1+y2)(y1-y2)=4(x1-x2),
∴直线l的斜率k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{4}{{y}_{1}+{y}_{2}}$=$\frac{4}{2×\frac{1}{3}}$=6,
故直线l的方程为y-$\frac{1}{3}$=6(x-2),
即18x-3y-35=0.

点评 本题考查的知识点是直线与抛物线的位置关系,抛物线的标准方程,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2a(cos2x+sinxcosx)+b
(1)当a=1时,求函数f(x)的周期及单调递增区间
(2)当a>0,且x∈[0,$\frac{π}{2}$]时,f(x)的最大值为4,最小值为3,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=sin2x+2cosx在R上的值域是[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某连续经营公司的5个零售店某月的销售额和利润资料如表:
商店名称A B C D E 
 销售额(x)/千万元 3 5 6 7 9
 利润(y)/百万元 2 3 3 4 5
(1)若销售额和利润额具有线性相关关系,用最小二乘法计算利润额y对销售额x的回归直线方程;
(2)若该连锁经营公司旗下的某商店F次月的销售额为1亿3千万元,试用(1)中求得的回归方程,估测其利润.(精确到百万元) 
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某校有150位教职员工,其每周用于锻炼身体所用时间的频率分布直方图如图所示,据图估计,锻炼时间在[8,10)小时内的人数为(  )
A.30B.120C.57D.93

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知一个几何体的三视图如图所示,根据图中数据,可得该几何体的表面积为24+6π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知cosθ>0,tan(θ+$\frac{π}{4}$)=$\frac{1}{3}$,则θ在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在长方体ABCD-A1B1C1D1中,AB=BC=$\sqrt{3}$,AA1=1,则异面直线AD与BC1所成角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知△ABC是钝角三角形,若AC=1,BC=2,且△ABC的面积为$\frac{{\sqrt{3}}}{2}$,则AB=(  )
A.$\sqrt{3}$B.$\sqrt{7}$C.$2\sqrt{2}$D.3

查看答案和解析>>

同步练习册答案