精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=eax﹣x,其中a≠0.
(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合.
(2)在函数f(x)的图象上取定两点A(x1 , f(x1)),B(x2 , f(x2)(x1<x2),记直线AB的斜率为K,问:是否存在x0∈(x1 , x2),使f′(x0)>k成立?若存在,求x0的取值范围;若不存在,请说明理由.

【答案】
(1)

解:若a<0,则对一切x>0,函数f(x)=eax﹣x<1,这与题设矛盾,

∵a≠0,∴a>0

∵f′(x)=aeax﹣1,令f′(x)=0,可得

令f′(x)<0,可得 ,函数单调减;令f′(x)>0,可得 ,函数单调增,

时,f(x)取最小值

∴对一切x∈R,f(x)≥1恒成立,则

令g(t)=t﹣tlnt,则g′(t)=﹣lnt

当0<t<1时,g′(t)>0,g(t)单调递增;当t>1时,g′(t)<0,g(t)单调递减

∴t=1时,g(t)取最大值g(1)=1

∴当且仅当 =1,即a=1时,①成立

综上所述,a的取值集合为{1}


(2)

解:由题意知,

令φ(x)=f′(x)﹣k= ,则

令F(t)=et﹣t﹣1,则F′(t)=et﹣1

当t<0时,F′(t)<0,函数单调减;当t>0时,F′(t)>0,函数单调增;

∴t≠0时,F(t)>F(0)=0,即et﹣t﹣1>0

>0,

∴φ(x1)<0,φ(x2)>0

∴存在c∈(x1,x2),φ(c)=0

∵φ(x)单调递增,故这样的c是唯一的,且

当且仅当x∈( ,x2)时,f′(x)>k

综上所述,存在x0∈(x1,x2),使f′(x0)>k成立,且x0的取值范围为( ,x2


【解析】(1)先确定a>0,再求导函数,确定函数的单调性,可得 时,f(x)取最小值 故对一切x∈R,f(x)≥1恒成立,则 ,构建新函数g(t)=t﹣tlnt,则g′(t)=﹣lnt,确定函数的单调性,求出函数的最大值,由此即可求得a的取值集合;(2)由题意知, ,构建新函数φ(x)=f′(x)﹣k= ,则 ,构建函数F(t)=et﹣t﹣1,从而可证明φ(x1)<0,φ(x2)>0,由此即可得到存在x0∈(x1 , x2),使f′(x0)>k成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c.已知A= ,bsin( +C)﹣csin( +B)=a,
(1)求证:B﹣C=
(2)若a= ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数yfx满足fx+1)=fx+1,求函数yfx)与yx图象交点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设N=2n(n∈N* , n≥2),将N个数x1 , x2 , …,xN依次放入编号为1,2,…,N的N个位置,得到排列P0=x1x2…xN . 将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前 和后 个位置,得到排列P1=x1x3…xN1x2x4…xN , 将此操作称为C变换,将P1分成两段,每段 个数,并对每段作C变换,得到P2 , 当2≤i≤n﹣2时,将Pi分成2i段,每段 个数,并对每段作C变换,得到Pi+1 , 例如,当N=8时,P2=x1x5x3x7x2x6x4x8 , 此时x7位于P2中的第4个位置.
(1)当N=16时,x7位于P2中的第个位置;
(2)当N=2n(n≥8)时,x173位于P4中的第个位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆轴交于两点,且为圆心),过点且斜率为的直线与圆相交于两点

(Ⅰ)求实数的值;

(Ⅱ)若,求的取值范围;

(Ⅲ)若向量与向量共线(为坐标原点),求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,双曲线 =1(a,b>0)的两顶点为A1 , A2 , 虚轴两端点为B1 , B2 , 两焦点为F1 , F2 . 若以A1A2为直径的圆内切于菱形F1B1F2B2 , 切点分别为A,B,C,D.则: (Ⅰ)双曲线的离心率e=
(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值 =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据以往的经验,某工程施工期间的将数量X(单位:mm)对工期的影响如下表:

降水量X

X<300

300≤X<700

700≤X<900

X≥900

工期延误天数Y

0

2

6

10

历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:
(1)工期延误天数Y的均值与方差;
(2)在降水量X至少是300的条件下,工期延误不超过6天的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数对一切实数都有成立,且.

(1)的值;

(2)的解析式,并用定义法证明单调递增;

(3)已知,设P,不等式恒成立,Q:时,是单调函数。如果满足P成立的的集合记为A,满足Q成立的集合记为B,求(R为全集)。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x0 , y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x0=1﹣ 时,切线MA的斜率为﹣

(1)求P的值;
(2)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).

查看答案和解析>>

同步练习册答案