精英家教网 > 高中数学 > 题目详情

【题目】已知定义域为R的函数f(x)= 是奇函数.
(1)求a,b的值;
(2)判断函数f(x)的单调性,并用定义证明;
(3)若对于任意 都有f(kx2)+f(2x﹣1)>0成立,求实数k的取值范围.

【答案】
(1)解:因为f(x)是奇函数,所以f(0)=0 =0,解得b=1,

f(x)= ,又由f(1)=﹣f(﹣1) ,解得a=2


(2)证明:由(1)可得:f(x)= =

x1<x2,∴ >0,

则f(x1)﹣f(x2)= = >0,

∴f(x1)>f(x2).

∴f(x)在R上是减函数


(3)解:∵函数f(x)是奇函数.

∴f(kx2)+f(2x﹣1)>0成立,等价于f(kx2)>﹣f(2x﹣1)=f(1﹣2x)成立,

∵f(x)在R上是减函数,∴kx2<1﹣2x,

∴对于任意 都有kx2<1﹣2x成立,

∴对于任意 都有k<

设g(x)=

∴g(x)= =

令t= ,t∈[ ,2],

则有 ,∴g(x)min=g(t)min=g(1)=﹣1

∴k<﹣1,即k的取值范围为(﹣∞,﹣1)


【解析】(1)直接根据函数是奇函数,满足f(﹣x)=﹣f(x),把x=0,和x=1代入,即可得到关于a,b的两个等式,解方程组求出a,b的值.(2)利用减函数的定义即可证明.(3))f(kx2)+f(2x﹣1)>0成立,等价于f(kx2)>﹣f(2x﹣1)=f(1﹣2x),即k< 成立,设g(x)=
换元使之成为二次函数,再求最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】把正方形AA1B1B以边AA1所在直线为轴旋转900到正方形AA1C1C,其中D,E,F分别为B1A,C1C,BC的中点.
(1)求证:DE∥平面ABC;
(2)求证:B1F⊥平面AEF;
(3)求二面角A﹣EB1﹣F的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国移动通信公司早前推出全球通移动电话资费个性化套餐”,具体方案如下:

方案代号

基本月租(元)

免费时间(分钟)

超过免费时间的话费(元/分钟)

1

30

48

060

2

98

170

060

3

168

330

050

4

268

600

045

5

388

1000

040

6

568

1700

035

7

788

2588

030

I)写出套餐中方案的月话费(元)与月通话量(分钟)(月通话量是指一个月内每次通话用时之和)的函数关系式;

II)学生甲选用方案,学生乙选用方案,某月甲乙两人的电话资费相同,通话量也相同,求该月学生甲的电话资费;

III)某用户的月通话量平均为320分钟,则在表中所列出的七种方案中,选择哪种方案更合算,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中,正确的是
①任取x>0,均有3x>2x
②当a>0,且a≠1时,有a3>a2
③y=( x是减函数;
④函数f(x)在x>0时是增函数,x<0也是增函数,所以f(x)是增函数;
⑤若函数f(x)=ax2+bx+2与x轴没有交点,则b2﹣8a<0且a>0;
⑥y=x2﹣2|x|﹣3的递增区间为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品最近30天的价格f(t)(元)与时间t满足关系式:f(t)= ,且知销售量g(t)与时间t满足关系式 g(t)=﹣t+30,(0≤t≤30,t∈N+),求该商品的日销售额的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出的以下四个问题中,不需要用条件语句来描述其算法是(
A.输入一个实数x,求它的绝对值
B.求面积为6的正方形的周长
C.求三个数a、b、c中的最大数
D.求函数f(x)= 的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在轴上的椭圆过点,离心率为.

1)求椭圆的方程;

2)直线过椭圆的左焦点,且与椭圆交于两点,若的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|x+2<0},B={x|(x+3)(x﹣1)>0}.
(1)求集合A∩B;
(2)若不等式ax2+2x+b>0的解集为A∪B,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H,则以下命题中,错误的命题是(

A.点H是△A1BD的垂心
B.AH垂直平面CB1D1
C.AH的延长线经过点C1
D.直线AH和BB1所成角为45°

查看答案和解析>>

同步练习册答案