精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=x2-2ax+1.
(1)若对任意的实数x都有f(1+x)=f(1-x)成立,求实数 a的值;
(2)若f(x)在区间[1,+∞)上为单调递增函数,求实数a的取值范围;
(3)当x∈[-1,1]时,求函数f(x)的最大值.

分析 (1)由题意可得x=1为对称轴,求得f(x)的对称轴方程,即可得到a;
(2)求得f(x)的递增区间,[1,+∞)为它的子区间,可得a的范围;
(3)由函数图象开口向上,对称轴x=a,可得最大值只能在端点处取得,讨论a=0,a>0,a<0,即可得到所求最大值.

解答 解:(1)由对任意的实数x都有f(1+x)=f(1-x)成立,
知函数f(x)=x2-2ax+1的对称轴为x=a,即a=1;
(2)函数f(x)=x2-2ax+1的图象的对称轴为直线x=a,
由f(x)在[a,+∞)上为单调递增函数,
y=f(x)在区间[1,+∞)上为单调递增函数,得,a≤1;                                              
(3)函数图象开口向上,对称轴x=a,可得最大值只能在端点处取得.
当a<0时,x=1时,函数取得最大值为:2-2a;
当a>0时,x=-1时,函数取得最大值为:2+2a;
当a=0时,x=1或-1时,函数取得最大值为:2.

点评 本题考查二次函数的图象和性质的运用,主要是单调性和最值,注意运用分类讨论的思想方法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.复数$\frac{1-i}{2i+1}$(i为虚数单位)的模等于(  )
A.$\frac{2}{5}$B.$\frac{\sqrt{10}}{5}$C.2D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=loga(ax-1)(a>0,且a≠1).
(1)求函数f(x)的定义域;
(2若函数f(x)的函数值大于1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若f(x+1)=2x-1,则f(1)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.证券公司提示:股市有风险,入市需谨慎.小强买的股票A连续4个跌停(一个跌停:比前一天收市价下跌10%),则至少需要几个涨停,才能不亏损(一个涨停:比前一天收市价上涨10%).(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设A,B是非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合中B都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射,设f:x→$\sqrt{x}$是从集合A到集合B的一个映射.①若A={0,1,2},则A∩B={0,1};②若B={1,2},则A∩B={1}或∅.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$\frac{sinα-2cosα}{3sinα+5cosα}$=2,则tanα的值为(  )
A.$\frac{12}{5}$B.-$\frac{12}{5}$C.$\frac{5}{12}$D.-$\frac{5}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,6)
(Ⅰ)求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ;
(Ⅱ)若$\overrightarrow{c}$与$\overrightarrow{b}$共线,且$\overrightarrow{a}$-$\overrightarrow{c}$与$\overrightarrow{a}$垂直,求$\overrightarrow{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若x>0,y>0且2x+y=3,则$\frac{1}{x}+\frac{1}{y}$的最小值是$\frac{1}{3}(3+2\sqrt{2})$.

查看答案和解析>>

同步练习册答案