精英家教网 > 高中数学 > 题目详情
已知曲线C1(θ为参数),曲线C2(t为参数),
(1)曲线C1、C2是否有公共点,为什么?
(2)若把上各点的横坐标都压缩为原来的一半,分别得到曲线C1′、C2′,问C1′与C2′公共点的个数和C1与C2公共点的个数是否相同?说明你的理由.
【答案】分析:(1)先利用公式sin2θ+cos2θ=1将参数θ消去,得到圆的直角坐标方程,利用消元法消去参数t得到直线的普通方程,再根据圆心到直线的距离与半径进行比较,从而得到C1与C2公共点的个数;
(2)求出压缩后的参数方程,再将参数方程化为普通方程,联立直线方程与圆的方程,利用判别式进行判定即可.
解答:解:(1)C1的普通方程为x2+y2=1,圆心C1(0,0),半径r=1.…(1分)C2的普通方程为.…(2分)
因为圆心C1到直线的距离为1,…(4分)
所以C2与C1只有一个公共点.…(5分)
(2)压缩后的参数方程分别为(θ为参数); …(6分)
化为普通方程为::4x2+y2=1,,…(8分)
联立消元得,其判别式,…(9分)
所以压缩后的直线与椭圆仍然只有一个公共点,和C1与C2公共点个数相同.…(10分)
点评:本题主要考查了圆与直线的参数方程,以及直线圆的位置关系的判定,同时考查了利用判别式进行判定两曲线的公共点,转化与化归的思想方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C1的极坐标方程为P=6cosθ,曲线C2的极坐标方程为θ=
π4
(p∈R),曲线C1,C2相交于A,B两点.
(Ⅰ)把曲线C1,C2的极坐标方程转化为直角坐标方程;
(Ⅱ)求弦AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1的参数方程为
x=2cosθ
y=sinθ
,曲线C2的极坐标方程为ρcos(θ-
π
4
)
=
2
.将曲线C1和C2化为普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(选修4-4:坐标系与参数方程)
已知曲线C1的参数方程为
x=4+5cost
y=5+5sint
(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.
(Ⅰ)把C1的参数方程化为极坐标方程;
(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)

查看答案和解析>>

科目:高中数学 来源: 题型:

(已知曲线C1的参数方程为
x=2sinθ
y=cosθ
(θ为参数),曲线C2的参数方程为
x=2t
y=t+1
(t为参数),则两条曲线的交点是
(0,1)和(-2,0)
(0,1)和(-2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•深圳模拟)(《坐标系与参数方程》选做题)已知曲线C1的参数方程为
x=2cosθ
y=sinθ
 (θ∈[-
π
2
π
2
]
);以x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ(cosθ+sinθ)=m,若曲线C1与C2有两个不同的交点,则m的取值
范围是
[1, 
5
)
[1, 
5
)

查看答案和解析>>

同步练习册答案