精英家教网 > 高中数学 > 题目详情
9.若实数x,y满足$\left\{\begin{array}{l}{x≤2}\\{y≤3}\\{x+y≥1}\end{array}\right.$,则Z=2x+y-1的最大值为(  )
A.2B.3C.4D.6

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x≤2}\\{y≤3}\\{x+y≥1}\end{array}\right.$作出可行域如图,

化目标函数Z=2x+y-1为y=-2x+Z+1,
由图可知,当直线y=-2x+Z+1过点B(2,3)时,直线在y轴上的截距最大,Z有最大值为2×2+3-1=6.
故选:D.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.函数f(x)对任意a,b∈R,有f(a+b)=f(a)+f(b)-1,且当x>0时,f(x)>1.
(Ⅰ)求证:f(x)是R 上的增函数;
(Ⅱ)若f(-4)=5,解不等式f(3m2-m-3)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\sqrt{3}$sin(2x+$\frac{π}{3}$)+cos(2x+$\frac{π}{3}$).
(Ⅰ)求f($\frac{π}{6}$)的值;
(Ⅱ)求函数f(x)的最小正周期和单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图),

(1)由图中数据求a的值
(2)若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为多少?
(3)估计这所小学的小学生身高的众数,中位数(保留两位小数)及平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.直线l:mx-y+3-m=0与圆C:x2+(y-1)2=5的位置关系是(  )
A.相离B.相切C.相交D.有公共点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计算下列各式的值:
(1)27${\;}^{-\frac{2}{3}}$-(8.5)0+$\root{4}{(-3)^{4}}$;
(2)(lg2)2+lg5•lg20+lg100;
(3)已知5a=3,5b=4,求a、b,并用a,b表示log2512.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知Sn为等差数列{an}的前n项和,且a2=4,S4=20.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.下列函数中,在区间(0,+∞)上是增函数的是④.
①y=-x2②y=$\frac{1}{x}$③y=($\frac{1}{2}$)x④y=log2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,在正方体ABCD-A1B1C1D1中,E、G、H分别是BC、C1D1、AA1、的中点.
(Ⅰ)求异面直线D1H与A1B所成角的余弦值
(Ⅱ)求证:EG∥平面BB1D1D.

查看答案和解析>>

同步练习册答案