精英家教网 > 高中数学 > 题目详情
14.如图所示的程序框图,若f(x)=logπx,g(x)=lnx,输入x=2016,则输出的h(x)=(  )
A.2016B.2017C.logπ2016D.ln2016

分析 根据程序框图求出h(x)的解析式即可.

解答 解:x=2016时,f(x)=logπ2016<g(x)=ln2016,
故h(x)=f(x),
故选:C.

点评 本题考查了程序框图,考查对数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.下列四组函数中,表示相等函数的一组是(  )
A.f(x)=$\sqrt{{x}^{2}}$与g(x)=($\sqrt{x}$)2B.f(x)=|x|与g(x)=$\sqrt{{x}^{2}}$
C.g(x)=$\frac{{x}^{2}-1}{x-1}$与g(x)=x+1D.f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$与g(x)=$\sqrt{{x}^{2}-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.下列说法错误的是①.
①已知命题p为“?x∈[0,+∞),(log32)x≤1”,则非p是真命题
②若p∨q为假命题,则p,q均为假命题
③x>2是x>1充分不必要条件
④“全等三角形的面积相等”的否命题是假命题.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.正整数数列{an}满足$\frac{S_n}{a_n}=pn+q({p,q为常数})$,其中Sn为数列{an}的前n项和.
(1)若p=1,q=0,求证:{an}是等差数列
(2)若数列{an}为等差数列,求p的值.
(3)证明:a2016=2016a1的充要条件是p=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.曲线C:y=$\frac{1}{8}$x2的焦点为F,定点A(-1,0),若射线FA与抛物线C交于点M,与抛物线C的准线交于点N,则|MN|:|FN|的值是(  )
A.$\sqrt{5}$:(2+$\sqrt{5}$)B.2:(2+$\sqrt{5}$)C.1:(1+$\sqrt{5}$)D.$\sqrt{5}$:(1+$\sqrt{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设D为不等式组$\left\{\begin{array}{l}x+y≥0\\ x-y≤0\\ x+3y≤3\end{array}\right.$表示的平面区域,对于区域D内除原点外的任一点A(x,y),则2x+y的最大值是$\frac{9}{4}$,$\frac{x-y}{{\sqrt{{x^2}+{y^2}}}}$的取值范围是[-$\sqrt{2}$,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行下面的程序框图,若p=10,则输出的S等于(  )
A.$\frac{1023}{1024}$B.$\frac{1025}{1024}$C.$\frac{2047}{2048}$D.$\frac{2049}{2048}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知不等式x2-ax+a-2>0的解集为(-∞,x1)∪(x2,+∞),其中x1<0<x2,则${x_1}+{x_2}+\frac{2}{x_1}+\frac{2}{x_2}$的最大值为(  )
A.$\frac{3}{2}$B.0C.2D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合U=R,集合A={x|1<2x<4},B={x|x2-1≥0}则A∩(∁UB)=(  )
A.{x|1<x<2}B.{x|0<x<1|}C.{x|1≤x<2}D.{x|0<x≤1}

查看答案和解析>>

同步练习册答案